
INFORMATICS

Algorithms and
data structures

1

Contents

1. Algorithm ... 3

1.1. Algorithm development process .. 3

1.2. Types of algorithms ... 4

2. Abstract Data Type – ADT ... 5

2.1. Description .. 5

2.1. Properties of ADT ... 5

2.1. Operation in ADT .. 6

3. Algorithms analysis .. 7

3.1. Process efficiency comparison ... 7

3.2. Primitive operations... 8

4. Queues and stacks ... 9

4.1. Stack ... 9

4.2. Fronta ... 10

5. Vectors, Lists, Sequences .. 11

5.1. Vectors ... 11

5.2. Lists... 11

5.3. Sequence ... 12

6. Trees... 13

6.1. Types of nodes .. 13

6.2. Structure .. 13

6.3. Operations for Trees manipulation ... 14

7. Priority Queue and Heap .. 16

7.1. Priority queue ... 16

7.2. Heap ... 16

7.3. Handling a heap ... 17

8. Dictionaries and Hash Tables ... 19

8.1. Dictionary .. 19

8.2. Hash table ... 20

9. Sorting algorithms.. 21

2

9.1. Explanation ... 21

9.2. Bubble sort .. 22

9.3. Heap sort ... 23

9.4. Insertion sort ... 23

9.5. Merge sort ... 24

9.6. Quicksort ... 25

9.7. Selection sort .. 25

9.8. Bucket sort .. 26

9.9. Radix sort ... 27

9.10. Counting sort .. 27

10. Pattern matching .. 28

11. Graph theory ... 31

11.1. Types of edges .. 31

11.2. Types of graphs .. 31

11.3. Terminology .. 31

11.4. ADT Graf supports operations ... 32

11.5. Depth-First Search .. 32

11.6. Breadth-First Search .. 33

12. Genetic algorithms ... 35

12.1. Explanation .. 35

12.2. Terminologie ... 35

12.3. Example: .. 36

3

1. ALGORITHM

By the term algorithm is meant a precise instruction or procedure that can solve the given

job type. It describes the theoretical principle of the solution, unlike the exact (specific)

entry in the given programming language.

The algorithm should have certain properties:

Finality - Each algorithm must end in the final number of steps. There can be any number

of steps, but it must be final for each individual input. A procedure that does not meet

this condition cannot be called an algorithm, but only a computational method.

Generality - The algorithm does not address one particular problem, but a general class

of similar problems.

Determination - Each step of the algorithm must be unambiguously and precisely de-

fined. In each situation, it must be clear what to do and how to do it, how the algorithm

should continue. Some algorithms are not determined - they contain a random element

(eg: genetic algorithms)

Output (or Resultativity) - The algorithm has at least one output, the quantity that is in

the required relation to the inputs. The output is the answer to the problem.

Elementarity - the algorithm consists of a finite number of simple (elementary) steps.

1.1. Algorithm development process

There are several procedures that are used to design algorithms.

Top-down method - process solutions are decomposed into simpler operations until it

reaches the elementary steps.

Bottom-up method - from elementary steps, we create resources that will eventually

make it possible to handle the specific problem.

Alternatively, a combination of the two methods, when the top-down method is com-

pleted by "a partial bottom-up step" (usin the function library, high-level programming

language or system programming ...).

Usual procedures for algorithms are the following methods: Divide and conquer, greedy

algorithms, dynamic programming and backtracking.

4

 The Divide and conquer method divides the problem into sub-tasks that must be

independent of each other. Then these sub-tasks are solved. It is often imple-

mented recursively or iteratively.

 Greedy algorithm is mostly used for solving optimization problems. It always se-

lects a local minimum (maximum) in an attempt to find a global minimum (maxi-

mum) . This process is not always ideal and may not reach the global minimum

(maximum)

Dynamic programming divides the problem into subtasks, just like the Divide and con-

quer method, but in such a case these parts may be dependent.

Backtracking, or search return, is a way to solve algorithmic problems based on search-

ing the status tree of the problem. It is a brute-force search.

1.2. Types of algorithms

Algorithms can be divided into several types.

 Recursive algorithms that use (call) themselves.

 Randomized algorithms that makes some decisions of random (pseudo-random)

choices.

 Parallel algorithms that allocate tasks between more computers (processors,

threads).

 Another type is genetic algorithms based on the imitation of biological evolution-

ary processes.

 Heuristic algorithms that do not search for a precise specific solution, but just

some appropriate approximation. They are used in such situations where available

resources are insufficient to be used for exact algorithms or no suitable exact al-

gorithms are known at all.

5

2. ABSTRACT DATA TYPE – ADT

2.1. Description

Abstract Data Type - ADT - is an expression used for data types that are independent of

their own implementation.

Using ADT, we try to simplify and streamline the program that performs operations with

the given data type.

Each ADT can be deployed using basic algorithmic operations such as assignment, addi-

tion, multiplication, conditional jump,

2.1. Properties of ADT

ADT should have the following properties:

 Generality of implementation - Once designed, ADT can be embedded and run

smoothly in any program.

 Exact description - The link between the implementation and the interface must be

definite and complete.

 Simplicity - The user should not be involved in internal implementation and admin-

istration of ADT in memory.

 Encapsulation - The interface as a closed part, the user knows what ADT does, but

not how it works

 Integrity - The user cannot intervene in the internal data structure

 Modularity - The "modular" programming principle is well-arranged and allows easy

code parts exchange. When searching for errors, the individual modules can be con-

sidered compact units. There is no need to intervene in the whole program to improve

ADT.

If ADT is programmed object-oriented, then these properties are typically met by default.

6

2.1. Operation in ADT

Using ADT, basic operations can be performed. These include the Constructor, Selector,

and Modifier:

 The constructor creates a new ADT, assembles a valid internal representation of

the value based on the given parameters.

 The selector obtains the values that make up the components or properties of a

specific ADT value.

 A modifier performs changes to data type values.

7

3.ALGORITHMS ANALYSIS

3.1. Process efficiency comparison

Since one problem can usually be solved using several different procedures (algorithms),

it is necessary to have a tool that allows us to compare the effectiveness of the process.

Algorithms can be compared either experimentally or theoretically.

Experimental analysis is time consuming. Of course, time required increases with the

amount and size of inputs. This type of analysis requires a specific implementation of the

algorithm, which obviously requires additional knowledge. It's hard to find an average

case. Therefore, it is better to concentrate on the worst case possible that is easy to ana-

lyze and is critical for most applications, whether it's games, finance, robotics, and auto-

mated operations.

Experimental analysis of time required takes place in the environment where the algo-

rithm (program) is being implemented mostly using an internal time measurement func-

tion. The program run depends on the inputs and their composition, and not all inputs

are included in each program run. Comparing two algorithms requires the same hardware

and software and the same memory occupancy.

Instead of experimental analysis, certain theoretical procedures can be used. The theo-

retical analysis uses the description of the algorithm by means of operations instead of a

specific implementation. It takes into account all inputs and enables to rate the algorithm

speed independently of hardware or software.

One of these tools is the so-called Pseudocode. Pseudocode allows to use higher levels of

algorithm description. The description is more structured than a commonly written text,

but less detailed than a specific implementation. It is a preferred type of writing for de-

scribing algorithms. Its advantage and disadvantage is that it hides problems of a partic-

ular implementation.

The pseudocode uses keywords to describe the algorithm:

For run control: -If…then…else (condition), while…do, repeat…until, for…do (cycles)

Header: Algorithmus Name(arg1, arg2…), input, output

Procedure call (Methoden, Algorithmus): var.Name(arg1,arg2,…)

Value return: return Expression

8

Expressions: ← Zuschreibung

 = Gleichheit

 +, -, n2,… Mathematische Operationen

3.2. Primitive operations

Primitive operation is a basic operation performed by algorithm, identifiable in a pseudo-

code, independent of the programming language, and should be precisely defined. Such

a primitive operation may nr expression evaluation, assigning a value to a variable, index

it in a field, procedure call or returned.

Similarly, we can use asymptotic notation (big O, Bachmann-Landau notation). It deter-

mines the operational demandingness of the algorithm by determining how the algorithm

behavior will change depending on the size of the input data. Asymptotic time and space

complexity is usually used. The type of the write used means that the algorithm de-

mandingness is less than A+B ∙ f(N), where A and B are appropriately selected constants,

and N is the variable describing the size of the input data. The multiplicative and additive

constants, ie. O(N+1000)=O(1000∙N)=O(N) are disregarded. We are only interested in the

behavior of a large N values.

To determine the time required for the algorithm using the big O notation, we must find

the largest possible number of primitive operations, which we then express by means of

the big O notation.

9

4. QUEUES AND STACKS

4.1. Stack

A stack is a data structure that serves to store data. It is characterized by a way of data

manipulation - it accesses the data using the LIFO (Last In First Out) principle. It can be

imagined as a plate container.

The ADT stack must contain at least:

 operations for inserting an object,

 returning and removing the last object,

 querying on the top of the stack,

 its size,

 whether the stack is empty.

If we try to perform a pop or top operation on an empty stack, we will get an Empty-

StackException exception.

Stack application is, for example, the history of the web browser, the Undo sequence in

the editors, or the individual procedures call. The stack can be used as an auxiliary data

structure for other algorithms or as part of other data structures.

The simplest way to implement the sis by means of an array. We add the elements from

left to right and the auxiliary variable holds the index of the last element.

Thanks to the array properties we get the following properties:

 n - number of elements in the stack

 Memory requirements - O (n)

 Time requirement of each operation - O (1)

Array also brings some limitations:

 At the beginning, we must define the stack size

 stack size cannot be changed at will

 Adding an element to the full stack will cause an implementation-specific excep-

tion

10

4.2. Fronta

The queue data structure FIFO (First In First Out). The minimum queue implementation

must include operations for:

 inserting an item at the end of the queue,

 selecting an item from the beginning of the queue,

 query on the beginning of the queue,

 its length and occupancy.

Llike the stack, the queue can throw an exception during the dequeue operation or

queues over a blank stack?queue - EmptyStackException.

Queue application is for example waitlist, queue, access to shared resources (printers),

multiprogramming. The queue can also be used as an auxiliary data structure for other

algorithms or as a part of other data structures.

The queue can be implemented using an array. To improve its properties, a circular array

is used. We thus have two variables, f - index of the first element, r - index of the last

element plus one (pointing to the first free space).

11

5. VECTORS, LISTS, SEQUENCES

5.1. Vectors

The vector extends the concept of array by storing the sequence of any objects. The ele-

ment in the vector can be read, inserted and removed by determining its order The vector

enables basic operations:

 elements in a specific order,

 replacing the element at a specific location, inserting it into a particular loca-

tion,

 removing an element from a particular location,

 enables to determine the size and whether the vector is empty

Vectors operations may throw an exception in case of an incorrect index (usually

negative). Vector application is a sorted object collection (basic database). Vectors

can be implemented using an array. This brings the following properties:

 The variable n indicates the length of the vector

 Operation isEmpty () elemAtRank (r) replaceAtRank (r, O) - time complexity O(1)

 Operation insertAtRank (r, O) - Time complexity O (n)

 Operation removeAtRank (R) - Time complexity O (n)

5.2. Lists

Another data structure is the list. The list is a sequence of positions storing any data. It

introduces relationships before / after between positions.

General operations are a query on size, and a blank list query. Other operations are find-

ing out whether the given element is the first or the last one, obtaining the first and the

last element, the preceding or the following element.

The ADT list contains:

 replaceElement(p, o),

 swapElements(p, q),

 insertBefore(p, o),

 insertAfter(p, o),

 insertFirst(o),

 insertLast(o),

12

 remove(p).

Lists can be divided into single linked list and double linked list. In a single linked list, the

element contains a reference to the next node; in the case of a double linked list, the

element also contains a reference to the preceding node.

5.3. Sequence

ADT sequence is a combination of a vector and a list, the elements can thus be accessed

using both the position and sequence. Besides vector and list operations, it also includes

interconnecting operations atRank (r) and rankOf (p).

Sequence is a general basic type that can be used to store an arranged set of elements. It

is a general replacement for a stack, queue, vector or list. It can also be used as a small

database.

13

6. TREES

Trees represent a model of a hierarchical structure that consists of nodes with a par-

ent/child relationship between them.

Trees can be used as an organizational chart, file systems, or programming environment.

The following terminology is used to describe trees and their parts:

6.1. Types of nodes

 Root (root)

 Inner node - a node that is neither a root nor leaf

 List (leaf node, external node) - a node that has no offsprings

 Parent node - the node directly preceding the node on the path from leaf to root

 Child node - the node that follows directly after the node on the path from the root

to the leaf

 Sibling - siblings refer to as the nodes with the same parent

 Ancestor node, predecessor node - a node that lies in front ofthe given node on

the path to the root (the nearest ancestor is the parent)

 Successor node - a node that lies behind the given node on the path from the root

to any leaf (the next descendant is a descendant)

 Depth - tree depth is the length of the longest path from root to sheet, with an

empty tree defined as -1

 Level - is usually used for a set of nodes located at the same distance from the root,

counted by the number of nodes

6.2. Structure

 Subtree – is a subgraph of a tree, which is also a tree (most frequently, there are

subtrees formed by taking a tree node as a new root and retaining the rest of the

structure,

 Branch - Each path from root to leaf.

14

6.3. Operations for Trees manipulation

General operations:

 integer size(),

 boolean isEmpty(),

 objectIterator elements(),

 positionIterator position().

Access operations:

 position root(),

 position parent(),

 positionIterator children(p),

 Dotazovací operace,

 boolean isInternal(p),

 boolean isExternal(p),

 boolean isRoot(p).

Actualization operations

 swapElements(p, q),

 object replaceElement(p, o).

Since tree is a hierarchical structure, it can be tracked in several ways.

Pre-order traversal

 Checking whether the node is empty or null

 Displaying the current node data

 The left subtree throughput by recursive pre-order function call

 The right subtree throughput by recursive pre-order functions call

In-order throughput

 Checking whether the node is empty or null

 The left subtree throughput by recursive pre-order function call

 Displaying the current node data The right subtree throughput by recursive pre-

order functions call

Post-order throughput

 Checking whether the node is empty or null

 The left subtree throughput by recursive pre-order function call

 The right subtree throughput by recursive pre-order functions call

15

 Displaying the current node data

Each type of throughput gives different results.

 Pre-order: F, B, A, D, C, E, G, I, H

 In-order: A, B, C, D, E, F, G, H, I

 Post-order: A, C, E, D, B, H, I, G, F

Using the ADT Tree, it is also possibleto define a Binary Tree or other types.

The binary tree extends the definition of the tree by the fact that each node has no more

than two children, forming an ordered pair (left descendant, true descendant).

The binary tree adds additional operations:

 position leftChild(p)

 position rightChild(p)

 position sibling(p)

F

B

A D

C E

G

I

H

16

7. PRIORITY QUEUE AND HEAP

7.1. Priority queue

Priority queue stores a collection of items where the item is ordered pair key

(priority) -the value.

Basic implementation should include:

 insertItem(k, o),

 removeMin(),

 minKey(k, o),

 minElement(),

 size(),

 isEmpty().

The priority queue application is for example auctions and stock exchanges. The

priority queue key can be any object with a defined order and which can be ar-

ranged. Two different elements (values) can have the same key (priority).

To use the priority queue, the ADT Comparator must be implemented, which en-

ables to compare two objects.

7.2. Heap

Heap is a binary tree that stores keys as internal nodes. For each tree node outside the

root it holds true that the node key is larger than the parent key. For each heap a complete

binary tree is defined. If h is the height of the tree, then for i from 0 to h-1 there is 2i nodes

of i depth.

The last heap node is an internal node, which is located at the rightmost at the h -1 level.

17

Heap can be used to implement the priority queue. Then we store an item (key, value) in

each internal node, and keep a reference to the position of the last element.

7.3. Handling a heap

Operace insertItem (k,o)

 Finding the node where it will be inserted

 Saving the k key into the z node, changing z node into internal node

 Recovering the heap order (checking properties) - upheap () operation

Operace removeMin ()

 It corresponds to removing the root from the heap (node 2)

 Changing the root for the last node (2-7)

 Changing the w node and its children into the list

18

upheap()

 inserting a node may affect the arrangement/layout

 Upheap algorithm restores the arrangement by swapping k key upwards from

the inserted node

 It ends when the internal node becomes the root or parent key is less than or

equal k

downheap()

 removing a node may affect the arrangement/layout

 downheap algorithm restores the arrangement by swapping k key downwards

from the node

 it ends when the internal node becomes a leaf or the child key is greater than or

equal k

19

8. DICTIONARIES AND HASH TABLES

8.1. Dictionary

Dictionary refers to the ADT containing a key-value collection that can be searched for.

Operations that can be performed with the dictionary:

 findElement(k),

 insertItem(k, o),

 removeElement(k),

 size(),

 isEmpty(),

 keys(),

 elements()

Dictionary application is a directory, credit card authorization, dictionary, domain name

translation to IP address.

Log File - dictionary implemented as a random sequence (double linked list). We store the

objects in any order.

Complexity of operations:

 Vložení objektu O(1)

 Nalezení prvku, odebrání prvku O(n)

The log file is suitable for small dictionaries or applications where the most frequent op-

eration is inserting, while searching and removing is rarely done.

The findElement (k) operation on a dictionary implemented by a sequence based on a

key-based array is performed as a binary search. At each step, the candidate number is

divided by two, ending after the logarithmic number of steps.

Lookup table is a Dictionary implemented using an arranged sequence. We store the

dictionary entries in a sequence based on a key-based array; an external key comparator

is required.

Complexity of operations:

 Finding the element O(log(n))

 Inserting element, removing element O(n)

This is effective for small dictionaries or applications where searching is a frequent oper-

ation.

20

Binary search tree is a binary tree for which the following rules apply:

 u, v and w are such nodes for which it holds true that u is in the left v subtree

and w is in the right v subtree

 𝑘𝑒𝑦(𝑢)≤𝑘𝑒𝑦(𝑣)≤𝑘𝑒𝑦(𝑤)

 External nodes do not store any items.

 The in-order throughput gives the keys in the ascending order

8.2. Hash table

Hash function h is a function that allocates an integral value from the 0 and N-1 interval

to the key of a given type between 0 and N-1. The purpose of this function is to split the

keys uniformly at a given interval.

A hash table for a given key type contains a hash function and a N-size array (table).

The key is replaced by a hash value. However, it may happen that for the two keys the

same hash value is generated - a collision occurs. This can be solved in two ways:

 by chaining - conflicting items are stored as sequences

 by open addressing - the item is saved elsewhere in the table.

21

9. SORTING ALGORITHMS

9.1. Explanation

Sorting algorithms are used to sort the data file in a specific order, either alphabetical or

numerical. The key-value pair is ranked by the key and the value is not taken into account.

Sorting algorithms can be divided into stable and unstable, depending on whether they

keep the order of items with the same key, natural and unnatural - natural work faster

with a partially arranged set.

They can also be broken down by the sorting type:

 By selecting

 By inserting

 By replacing

 By merging

The best-known algorithms:

 Bubble sort

 Heap sort

 Insertion sort

 Merge sort

 Quicksort

 Selection sort

Other algorithms based on a different principle

 Bucket sort

 Radix sort

 Counting sort

22

9.2. Bubble sort

 Easy to implement.

 Universal, local (in-place, no need of extra memory).

 The algorithm starts at the beginning of the data set. It compares the first two ele-

ments, and if the first is greater than the second, it swaps them. It continues doing

this for each pair of adjacent elements to the end of the data set. It then starts

again with the first two elements, repeating until no swaps have occurred on the

last pass.

Algorithm:

procedure bubbleSort(A : list sortable items)

 n = length(A)

 repeat

 swapped = false

 for i from 1 to n-1 inclusive do

 if A[i-1] > A[i] then

 swap(A[i-1], A[i])

 swapped = true

 end if

 end for

 until not swapped

end procedure

23

9.3. Heap sort

 A comparison-based sorting algorithm.

 Not stable.

 Uses the heap data structure and its properties.

Algorithm:

procedure heapsort(a, count) is

 input: an unordered array a of length count

 heapify(a, count)

 end ← count - 1

 while end > 0 do

 swap(a[end], a[0])

 (the heap size is reduced by one)

 end ← end - 1

 (the swap ruined the heap property, so restore it)

 shiftDown(a, 0, end)

If the smallest element is the root – placed on the first place in the array and the root is

removed.

Downheap() – recovering the heat following the rulesWe repeat removing the root and

heap recovery until the heap is empty.

9.4. Insertion sort

 A simple sorting algorithm that builds the final sorted array (or list) one item at a

time

 Simple implementation

 Efficient for (quite) small data sets

 Efficient for data sets that are already partly sorted

 Stable, on-line, in-place

24

Algorithm:

for i = 1 to length(A)

 j ← i

 while j > 0 and A[j-1] > A[j]

 swap A[j] and A[j-1]

 j ← j - 1

 end while

end for

9.5. Merge sort

 is an efficient, general-purpose, comparison-based sorting algorithm

 the divide and conquer method

 Stable, divide and conquer algorithm, easy to paralelized

 Worst and average time: O(NlogN)

 Extra memory needs: array of N size

Algoritmus

mergesort(m)

 var list left, right

 if length(m) ≤ 1

 return m

 else

 middle = length(m) / 2

 for each x in m up to middle

 add x to left

 for each x in m after middle

 add x to right

left = mergesort(left)

 right = mergesort(right)

 result = merge(left, right)

 return result

25

9.6. Quicksort

 an efficient sorting algorithm

 It takes: O(NlogN) – O(N2)

 Divide and conquer algorithm, not stable, in-place

 Recursive

 The steps are:

o Pick a pivot from the array.

o Partitioning: reorder the array so that all elements with values less than the

pivot come before the pivot, while all elements with values greater than the

pivot come after it (equal values can go either way). After this partitioning,

the pivot is in its final position. This is called the partition operation.

o Recursively apply the above steps to the sub-array of elements with smaller

values and separately to the sub-array of elements with greater values.

 Pivot selection –median is ideal

o First element (any fix position) – not suitable for partly arranged sets

o Random element – actually pseudo-random

o Median of three (five…) – or other number of elements from the fix or ran-

dom positions

When pivot is selected properly, it does not need extra memory. Quicksort is an unstable

algorithm. The pivot selection method affects sorting, but on average, it is the fastest uni-

versal array sort algorithm in the computer operational memory.

9.7. Selection sort

A simple algorithm whose time complexity is O (N 2),It is suitable for small data volumes.

It is universal, local and unstable.

Procedure:

1. Dividing the sequence into an arranged and unarranged unassigned part.

2. Finding the element with the smallest value in the unarranged part of the

sequence.

3. Replacing it with the element in the first position of the unarranged part.

4. The first element of the unarranged part is included in the arranged part

and at the same time the unarranged part is reduced by 1 element from

the left.

5. The remainder of the sequence is arranged by repeating steps 2 - 5 for

the remaining unarranged part.

6.

26

Comparison of sorting algorithms:

9.8. Bucket sort

It divides data into several buckets, its time requirement is O (n * k), where k = n / m, input

n, number of bucket is m.

To use Bucket sort, prerequisites are required:

 Suitable for evenly distributed input data values.

 The algorithm for arranging the buckets must be stable

Procedure:

 Input data are divided into a predefined number of buckets.

 For each bucket a stable sorting algorithm is called.

 The individual buckets are gradually copied into the output array.

The benefits of the bucket sort are that it is well parallelizable and does not require having

all the data in memory at the same time.

27

9.9. Radix sort

It sorts integers by scanning through all digits. There are two approaches:

 LSD (Least Significant Digit)

 MSD (Most Significant Digit)

Time required: O((z+n)*logzu), where z is the basis of the selected number system, n are

the numbers at the input and u is the maximum range of numbers at the input

It is not suitable for unlimited input size.

Example of LSD radix: 170, 45, 75, 90, 802, 2, 24, 66 ⇒ 170, 90, 802, 2, 24, 45, 75, 66 ⇒ 802,

2, 24, 45, 66, 170, 75, 90 ⇒2, 24, 45, 66, 75, 90, 170, 802

9.10. Counting sort

Suitable for large files with a small amount of discrete values; stable. The time required

is O(N+M) and extra memory needs O(M.)

Prerequisites:

 Number of different values (M) is significantly smaller than the total number of

elements (N).

 Auxiliary array - writing and reading at a constant time (array indexed by value or

hash values).

Algorithm:

 Passing the input array from the left (or from the right).

 For each element, the frequency of occurrence of this element is increased in the

auxiliary array.

 To each item, the number of occurrences of all previous items (it gets the exact

position of the border) is added.

 Starting to pass the unarranged array from the right.

 For each element, it looks into the auxiliary array at the top of the placement

boundary.

 Placing the element into that border and reduces it by one.

 Repeating until the entire array is passed.

28

10. PATTERN MATCHING

Pattern matching, is searching for a specific pattern in a given sequence, usually search-

ing for a substring in a string

First, a string must be defined. String is a sequence of characters from the given alpha-

bet. Alphabet is a set of all possible characters - Ascii, Unicode, {0,1}, {A, C, G, T}

If the P string length is m, then the substring P [i..j] of P string consists of characters be-

tween i and j. The string in front of the index i is prefix. The string located behind the

index j is a suffix.

Application - text editors, search tools, biological research.

There are several algorithms for pattern matching.

The basic one is the Brute-Force (brute force).

It passes the text from left to right

It compares the P pattern with the T text , for every possible position until:

a match is found

all possible positions have been tested

Time required for this algorithm is O (nm).

Boyer-Moore algorithm goes through text from the end (right to left).

We define:

 The index i indicates the position in text T, the index j points to the P

During the search, there are 4 possible situations:

 T (i) is not in P; then i will be moved bythe P length (P aligned to the next let-

ter T, that is, T (i + 1))

 T (i) corresponds to P (j) – we move in both to the left and repeat (as in the brute

force)

 T (i) is P (j) T (i) is in front of the index j P -> P aligned to the right so that T (i) corre-

sponds to the occurrence of P and repeat

 T (i) is P (j) T (i) P is an index j -> move to the right by 1 and repeat (not recurring,

but not move more below)

Return i - if the whole pattern is found.

29

The algorithm is faster than the Brute-Force, however, its complexity can be O (mn +

A), where A is the size of the alphabet.

Preprocessing is required to apply this algorithm. It finds out the position of the letters

(from the left)

 If the patern is eg: "ABRAKADABRA"

 A gets index 10, B gets index 8, K = 4, D = 6 and R = 9. For other letters, we assign -

1.

 We implement the function Last (char input) which returns the index according to

the letter, then, for cases 3 and 4, we compare the last (T (i)) and j, and thus we

know whether to move it tothe Last (T (i)) (if the Last is (T (i)) <j) or only i ++

Knuth-Morris-Pratt (KMP) algorithm

It searches thetext from left to right, unlike brute-force it does not make all comparisons. If

a disagreement is found, it moves by more than one letter. If we find a P (from the begin-

ning, a prefix), the characters of this prefix match the text, so no need to check them

again. The end of the found substring can also be included at the beginning of this sub-

string. Such a match is, of course, the whole of the P found, so we are looking for P + 1. So

we go from the end of the found P piece from the left and right, and when we can not find

a match, we know how much we can move. This can be computed into a table - then all

is O (1).

Trie

Trie is a tree structure for text pre-processing. Each node has one letter. The length of the

path from the node to the top determines the position of the letter in the word.

The search has a time requirement O (dm), where d is the alphabet size, m is the length

of the word.

It is possibleto save all text in the Trie structure, then each node contains one word.

For saving,the so-called compressed Trie can be defined. The tree then contains nodes of

at least degree two (two letters per node).

30

Example:S={BELL, BEAR, BULL, BUY, SELL, STOCK, STOP}

31

11. GRAPH THEORY

Graph is an ordered pair (V, E) where V is the set of vertices and E is the set of edges. Each

edge is determined by just two vertices, optionally by the direction or weight.

11.1. Types of edges

There are several types of edges:

 Oriented - ordered pair of vertices (u, v) where u is the beginning, v is the end/

target

 Unoriented - ordered pair of vertices (u, v)

 Loops - the edge begins and ends at the same vertex

 Multiple edge (multiple, parallel) there are more edgesbetween vertices (u, v)

11.2. Types of graphs

Similarly, there are several types of graphs.

 Oriented - all edges are oriented

 Un-oriented - all edges are not oriented

 Multigraph - Contains multiple edges

11.3. Terminology

 End vertices (or endpoints) of an edge

 Edges incident on a vertex

 Adjacent vertices

 Degree of a vertex

 Parallel edges

 Self-loop

 Path

o sequence of alternating vertices and edges

o begins with a vertex

o ends with a vertex

o each edge is preceded and followed by its endpoints

 Simple path

 path such that all its vertices and edges are distinct

 Cycle

32

o circular sequence of alternating vertices and edges

o each edge is preceded and followed by its endpoints

 Simple cycle

o cycle such that all its vertices and edges are distinct

11.4. ADT Graf supports operations

Access operations

 aVertex()

 incidentEdges(v)

 endVertices(e)

 isDirected(e)

 origin(e)

 destination(e)

 opposite(v,e)

 areAdjecent(v,w)

Update operations

 insertVertex(o)

 insertEdge(v, w, o)

 insertDirectedEdge(v, w, o)

 removeVertex(v)

 removeEdge(e)

General Operations

 numVertices()

 numEdges()

 vertices()

 edges()

The graph structure needs to be searched in some way. There are two options - DFS

(Depth-First Search) and BFS (Breadth-First Search).

11.5. Depth-First Search

Depth-first search is a complete algorithm (passes through each node). Its principle

consists in the fact that it expands the first successor of each peak if it has not visited it

yet. If a peak is encountered from which it is not possible to continue (there are no suc-

cessors or all of them have already been visited), it goes back by backtracking.

33

It passes the nodes in the following order:

11.6. Breadth-First Search

Breadth-First Search is a similar algorithm, it passes through all the neighbors of the

starting peak, then the neighbors of neighbors etc. to pass through the entire connection

component

It passes the nodes in the following order:

The fundamental question of graph theory is finding the shortest path between two

nodes. There are several algorithms for that.

Dijkstra’s algorithm

 non-negative weights on the edges

 O(|V|2+|E|) – V number of vertices, E number of edges

34

Bellman-Ford algorithm

 Graph can have negative edges

 O(V·E) – slower than Dijsktra’s alg.

Floyd-Warshall algorithm

 Directed/oriented graph with non-negative edges

 It finds the shortest path between all vertices

 Time required – O(V3), memory required - O(V2)

Johnson’s algorithm

 oriented graph, it may contain negative edges

 find the shortest paths between all pairs of vertices in a sparse, edge weighted,

directed graph. It allows some of the edge weights to be negative numbers

 O(V2 log2(V)+ VE)

35

12. GENETIC ALGORITHMS

12.1. Explanation

Genetic algorithms belong among the evolutionary algorithms and are parts of artificial

intelligence. They are a class of heuristic algorithms.

They use the knowledge of evolutionary biology to solve complex problems for which

there is no exact algorithm.

It imitates the techniques of evolutionary biology:

 Heredity

 Mutation

 Natural selection

 Crossover

The principle of genetic algorithms works according to the scheme:

1. Initialization – generate the 0 generation

2. Begining of cycle – Choose (randomly) several individuals from whole population

3. Create a new generation using the following methods:

i. crossover - „swap“ parts of few individuals

ii. mutation – randomly change of some genes

iii. reproduction – copy individuals without changes

4. Calculate the capability of the new generation

5. Termination of the cycle - Repeat from point 2 until the termination condition is

reached

6. The end of algorithm – the individual with the best capability is the main algo-

rithm output and represents the best possible solution

12.2. Terminologie

 Phenotype - an individual's designation

 Genotype, genome, chromosome - representation of phenotype

 Chromosome - divided into different linearly arrayed genes (i -th chromosomal

gene of the same type representing the same characteristic)

 Alleles - Various gene values

 Fitness value - ranging from 0-1, expresses the quality of each individual

36

Each individual can be encoded (genetically described) in a different way. The description

method can be important for the success or failure of solving a specific task.

12.3. Example:

0th Generation (fitness value # "1"):

 0100011011 f=0,5

 0101000100 f=0,3

 1010110000 f=0,4

 1110111000 f=0,6

Selection

 Weighted roulette:

o Probability of being a parent

 Tournament method

o Random selection of groups from each parent group becomes the per-

son with the highest fitness value

 Trimming

o We sort all the individuals according to the f value, cut the low value part,

select the parents from the rest

 Random selection

o The simplest method, f value does not play a role in selecting an individ-

ual for parenting

 Crossover

o Parents exchange parts of their genetic code

o Simplest method– one point crossover

o Place for cutting – randomly chosen

 X: 010001|1011

 Y: 111011|1000

o P: 0100011000 f=0,3

o Q: 111011 1011 f=0,8

o More-point crossover , possibility of more than two parents

37

 Mutation

o Random change of the random gene in an individual

o Very low probability

1. 0100011011 ⇒ 0101011011

2. 0101000100 ⇒ 0101100100

3. 1010110000 ⇒ 1010110100

4. 1110111000 ⇒ 1010111000

o It is possible to reach properties which are not in the original generation

 Termination

o This generational process is repeated until a termination condition has

been reached. Common terminating conditions are:

o A solution is found that satisfies minimum criteria

o Fixed number of generations reached

o Allocated budget (computation time/money) reached

o The highest ranking solution's fitness is reaching or has reached a plateau

such that successive iterations no longer produce better results

o Manual inspection

o Combinations of the above

	Algorithms and data structures
	Algorithms and data structures

