
INFORMATICS

Object-oriented Java
programming

1

Contents
1. Classes .. 1

1.1. Creating classes... 1

1.2. Working with the class ... 4

1.3. Creating a first instance ... 5

1.4. Remove a class .. 6

1.5. Restart the virtual machine ... 6

2. Constructors .. 7

2.1. Nonparametric constructor .. 7

2.2. Constructor with parameters .. 8

2.3. This .. 10

3. Methods ... 11

3.1. Methods returning some value .. 11

3.2. Calling methods .. 12

3.3. Passing parameters to methods .. 12

4. Static attributes ... 13

4.1. Static classes .. 13

4.2. Local variables ... 14

4.3. Recursion ... 14

5. Encapsulation .. 16

6. Debug the program .. 17

6.1. Test Driven Development .. 19

6.2. Create a test... 19

7. Debugger ... 21

8. Exceptions .. 23

8.1. Protected mode .. 23

8.2. Throw .. 24

8.3. Throws .. 24

9. Working with files ... 25

10. Graphical User Interface (GUI) .. 27

10.1. First application ... 27

11. Events ... 30

1

1. CLASSES

In real life, for example, the word chair is called a piece of furniture. Their function is to sit

on it. It is a description of the object, which is characterized by various attributes or func-

tions. An analogy in programming is a class. The class groups objects with some common

properties. In real life, there are many different chairs that can vary in material or color.

In programming a particular chair corresponds to an instance of the appropriate class,

sometimes also called an object. Thus, the class can be compared to a form into which a

particular thing is instantiated. Typically, classes can have any number of instances.

Individual objects can communicate with each other, send to each other different mes-

sages in which they can request different information or services. An example can be a

calculator that we can ask for a lot of tasks, such as adding two numbers. Each of the

functions of this calculator is professionally called the method. Requesting the use of a

particular method is called a method call. Thus, the method is part of the program that

an instance uses as a response to a method call (receive a message). The method builder

defines how the object should respond to the message.

The entire object-oriented program Pecinovsky (2004) describes as written in a program-

ming language a description of used classes, objects and messages that send these ob-

jects, supplemented with more complicated programs by describing the placement of

programs on individual computers and assigning them to the administration of the re-

spective service programs. (For example, OS or application servers).

1.1. Creating classes

Now we are going to build the classes themselves. Thus a kind of patterns, which produce

by a specific instance (object). In the BlueJ program, which we will use throughout this

course, we will choose a new project. Then select the button on the left. As shown in the

picture below.

2

In the following window, we select the simplest possible definition of class - class. Next,

choose the class name. In our project we have chosen the name FirstClass.

Class name is governed by several rules:

Rules for creating name identifiers

Links, classes, and others must be named for easy identification. We call these names as

identifiers. These identifiers must meet several conditions:

 It can contain any characters that are included in a set of UNICODE

 Gaps must not be used

 It is customary to write multi-word class names without spaces. Individual words

then begin with capital letters like: My First Pride

 Case and lower case letters are considered different

 The length is unlimited

 It must not start with a digit

 Can not match the keywords

3

After creation and translation, we have the first class. If we look into the folder where we

have saved the whole project. We'll find that there are several files in the folder

FirstClass.java We call this file as the source file. We will write a program de-

scribing the behavior of the class and therefore its instances.

This file is a text file only. You can edit it in any text editor.

FirstClass.class A translated byte code is stored in this file

FirstClass.ctxt BlueJ additional file. If you delete this file, BlueJ will recreate it

again at the next translation

4

1.2. Working with the class

After double-clicking on the class, we will open a text window where you can type or edit

the class source code. See image below:

In the text window we will see:

● Class definition FirstClass

● Constructor FirstClass ()

● Method sampleMethod()

The class definition contains words

Public - A keyword that identifies that anyone can work with a class

Class - A keyword that indicates that it will be the class definition

FirstClass - Class name (its identifier)

The content of the class is contained in the brackets below. In our example, it does not

contain any information, yet.

5

1.3. Creating a first instance

Close the text window. If you right-click on our first class. Attention! The class in question

must be compiled! In the pop-up menu, select the new PrvniTrida () command. BlueJ will

then ask us for the name of the instance being created. At the same time, we will offer it

in front of the selected name. All you have to do is approve. Which is how we created the

first class. As shown in the picture below.

By selecting the new PrvniTrida () command, we create an instance of the class by sending

a message compiled from the new keyword, followed by the name of the class from which

we want to create a pair of round parentheses. So we call a special method called a con-

structor. The constructor creates the requested instance and returns a link through which

we will address the created instance.

In our case, we did not construct any constructor method. But the constructor must have

every class! If we do not create a constructor, the compiler will automatically create the

simplest constructor we designate - the default constructor. At the moment we create the

first constructor in class, the compiler stops with the creation of the implicit constructor.

The created instance of the class is shown in the figure below. It's at the bottom, in the

area we call the object bench. The instance of the class is red.

6

1.4. Remove a class

Very easy. Right-click on the class and choose Delete. Once confirmed, the class is actually

deleted. However, the instance of the class itself remained. Requesting to delete a class is

actually a request to delete the appropriate files from the disk. The class instance itself is

stored in the memory. If we want to remove the instance of the class, we need to restart

the virtual machine.

1.5. Restart the virtual machine

Restarting the virtual machine will delete all references in the link stack. So we delete all

instances. We can do this either with the keyboard shortcut Ctrl + shift + r or by right-

clicking on the rectangle at the bottom right and selecting the command: Restart the vir-

tual machine.

7

2. CONSTRUCTORS

In the previous chapter, the compiler created an implicit constructor for us. Now we will

show you how to create your own constructors.

2.1. Nonparametric constructor

Create a student class similar to the one we deleted. Now we create a nonparametric

constructor. Nonparametric means that it does not require any information - parameters

for its run. The class and constructor declaration itself could look something like this. The

constructor itself is yellow:

{

int math =3;

int english =3;

int ICT =3;

public Student ()

{

}

}

Now we are going through the meaning of the individual parts of the text.

We first declared the Student and Variable math, english and ICT classes.

The constructor's header looks quite similar to the class header. The keyword keyword is

omitted. The constructor name must be the same as the class name in which the con-

structor is listed. Here are the brackets into which the parameters are written, then the

parametric constructor, if no brackets are written, it will be a parametric constructor. The

body of the constructor itself is in brackets.

8

2.2. Constructor with parameters

If we were a Student instance, each student would have the same marks. Therefore, this

time we create another constructor. This time with the parameters.

public class Student

{

int math =3;

int english =3;

int ICT =3;

public Student ()

{

}

public Student (int math,int english,int ICT)

{

}

}

The new parametric constructor was highlighted in yellow. Both constructors have the

same name. The translator distinguishes between them according to the number and

type of parameters. To the parametric constructor, we first specify the type and conse-

quently the identifier by which the program invokes the parameter in the constructor's

body. Therefore, we can not construct constructors with the same types of parameters.

The translator does not even distinguish the return values for individual constructors. The

use of multiple constructors is called overloading.

Now that we want to create a new instance - a pupil using a parametric constructor, we

will be asked to enter integer parameters as shown in the figure below.

9

10

2.3. This

Many constructors are similar to each other. Often, we want to use another constructor

in one constructor. This re-writing body constructor can be avoided by using this keyword,

followed by a list of parameters. Beware of calling another constructor using this must be

the very first constructor command! Using this constructor is another example.

public class Student

{

int math =3;

int english =3;

int ICT =3;

public Student ()

{

this (0, 0, 0);

}

public Student (int math,int english,int ICT)

{

11

3. METHODS

The method is a specific subroutine that performs a specific function. And one of the most

commonly used tools (almost) of each programming language. We could compare the

methods to the tools that each instance of the class is then equipped with. The method

itself consists of several parts:

 Access specifier – which determines who can call the method. The most common

are public and private. Specifier is optional

 Type of return value – Compulsory. If the method does not return, we writte void

 Method name – the same rules as in constructors

 Method parameter list – also the same principle as the constructors

The body of the method itself is enclosed in compound brackets. Where we can write

individual commands. If we want, we do not have to write anything in the body.

public void Hello()

{

System.out.println("Hello");

}

3.1. Methods returning some value

If the method should return a value, we must specify its type in the header, and in the

body of the method, we must return the statement followed by the variable we want to

return. After the return statement, the method is immediately terminated. Therefore, the

code that follows the return statement is not executed in the body of the method. The

example is shown below.

public double averageGrade ()

{

double average= (math + english + ICT)/3;

return average;

}

12

3.2. Calling methods

By simply writing codes, no code will be executed. It will be done when we call it. You can

only call the method from the point where the method is accessible. Call the method by

typing the method name and enter the parameters of the method into brackets. If the

method is listed in another class. First we have to name the class, the method name is

separated by a dot. If we send an instance message, we first need to write a reference to

this instance. For attributes, the situation is similar.

3.3. Passing parameters to methods

Values of primitive types such as characters, logical values, or numbers are passed so that

the value is copied to the local method variable

Object type values are passed through the link. Therefore, a link to the object in which the

actual parameter is just copied into the local method variable.

13

4. STATIC ATTRIBUTES

Static elements belong to a class, not an instance. Static attributes are called static. Be-

cause it belongs to a class, all methods of that class have access to it. We can read static

attributes even if there is no class instance. The static attribute declaration is listed below

and is marked with yellow.

class Group {

private static int number = 15;

public void New(int count) {

number = number + count;

}

}

4.1. Static classes

Class methods are called in the class. These are often the help methods we often use, but

we do not want to create an instance specifically for this purpose. As an example, a static

method can be used to test whether a given number is plus.

public static boolean isPlus(int number) {

 if (number >= 0) {

 return true;

 }

 return false;

}

Attention! Because the static method belongs to the class, we can not access any instance

attributes in it. These attributes do not exist within a class, but an instance.

14

4.2. Local variables

Sometimes we need to remember something in the method. Local variables are used for

this purpose. We declare them inside the method. Beyond the method, they can not be

accessed. This allows us to define another local variable with the same name in another

method. We do not use access modifiers (such as public and private) or static in their

declaration. We have to assign some value to their declaration. At the moment of leaving

the method, the local variable is dropped. Therefore, there is nothing in them that we

need between different methods. Frequent reasons for using local variables are to make

the program more transparent and to reduce the number of errors that are caused by

the repeated typing of complex expressions. The local variable declaration is as in the

example below.

public void totalPrice (int pieces)

{

int totalPrice = pieces *15;

 }

4.3. Recursion

Recurring is defining an object (mathematically understood) by yourself. Recursive fea-

tures must include some mechanism that ends the recursion at the appropriate time. If

that did not happen, the recursion would go up to "infinity" The classic example of the

end of the recursion is the insertion of stops.

A classic example of recursion is the Fibonacci sequence. For the Fibonacci sequence, each

member of the sequence is the sum of its previous two elements. A F (0) = 0 and F (1) = 1.

An example of calculating the fourth member is shown in the figure below. It can be seen

from Figure that in order to calculate F (4), we must first recursively recalculate F (3) and

F (2). To compute F (3), we first have to calculate F (2) + F (1), and for F (2) we have to

recursively recurs F (1) + F(0).

15

A big part of the calculation and recursion does repeatedly, making it computationally

demanding. For this reason, it is often better to use classic cycles. In some cases, the whole

algorithm is defined recursively (for example, Fibonacci sequence), or recursion may facil-

itate the work with some data structures.

A specific example of a recursive function call is shown below. In our example, we have 2

stops marked with yellow. The recursive call is then marked with a green color.

public static int fib (int n){

 if(n == 0) return 0;

 else if(n == 1) return 1;

 else return fib (n - 1) + fib (n - 2);

F(0)

F(4) F(3) F(2)

F(2) F(1) F(1) F(0)

F(1)

16

5. ENCAPSULATION

Wikipedia (dated 7 May 2018) defines encapsulation:

Encapsulation is one of the fundamentals of OOP (object-oriented programming). It refers

to the bundling of data with the methods that operate on that data.[5] Encapsulation is

used to hide the values or state of a structured data object inside a class, preventing un-

authorized parties' direct access to them. Publicly accessible methods are generally pro-

vided in the class (so-called getters and setters) to access the values, and other client clas-

ses call these methods to retrieve and modify the values within the object.

Encapsulation is very important. If we had a complicated program. We could mistakenly

influence the course, some of its parts. Finding and correcting such problems would take

us a lot of time. Encapsulation is one of the basic concepts of object programming.

Encapsulation in Java is a mechanism for packing data (variables) and code. In encapsula-

tion, the class variables will be hidden from other classes and can only be accessed by

methods of their current class. Therefore, it is also known as hiding data.

We will achieve this by selecting the parts to be accessed by other features as public. This

public part of the class. It is called the Class Interface. In the class interface, it is only ap-

propriate to include what the other sections of the program really need to know about

the class. For all the others we do not want to use the other parts of the program, set

them private.

If some parts of the program will use some sections of the public class that will be subse-

quently changed. This may affect their functionality. Therefore, it is better not to change

its publicly accessible parts after publishing the class.

Often all class attributes are declared as private. At our discretion, we can publish access

methods (setter, getter) that can be used to ensure that the attribute in question can only

be read and not edited, or it can be set with some restrictive conditions. (For example, age

is only a positive integer). If the attribute name matches the name of the parameter and I

need to work with both, I use the keyword this. This word is used as the class name in

which the method is included.

17

6. DEBUG THE PROGRAM

We often make a mistake when writing a program. These errors can be divided into sev-

eral categories.

Frequent problems are syntactical errors. When do we overcome the language syntax? So

against the rules of how to compose individual parts. Typically, for example, a forgotten

semicolon or bracket is used.

This problem is very often marked by the compiler before the compilation itself. At the

same time, we will colorfully mark the line in which it assumes the problem. As shown in

the picture:

Other errors appear when compiling. For more information on the error, we can jump to

the bottom left of the word Errors. After clicking, we'll see more help for the error.

18

Other mistakes could be named as runtime errors. These errors are not found by the

compiler. But at some stages of the program run they can happen. A typical example is

zero division. Where the program stops when the zero break occurs, the terminal window

opens in which it is displayed as the error is. BlueJ also marks the line where the problem

occurred. As shown in the picture below. To remove such kind of errors. It is necessary to

ideally try out all possible potentially problematic states of the program. So the user did

not encounter similar problems. Ideally, we will prepare a set of test tasks in advance.

Semantic errors are the most insidious type of error. When the compiler does not appear,

the program seems to work seamlessly. However, in some unexpected moments, the pro-

gram shows an error. Which can be a big problem.

An example could be: Mars Landing Marine Crash (1999) Problem of communication be-

tween components - the user of the interface expected the value in kilometers, the pro-

vider gave it in miles. Instead of the planned 140-150 kilometers, it headed only 57 kilo-

meters above the surface. At that height, however, Mars' atmosphere is too dense on the

probe. Climate Orbiter burned at about 80 kilometers. (Source: Technet.cz)

This type of error is solved by software engineering.

19

6.1. Test Driven Development

In addition to testing the finished program, we can choose a different philosophy of soft-

ware development - Test Driven Development. As part of this approach, we first define a

set of tests and then we write the program itself, in which we only focus on passing the

code through these tests. (We do not address code efficiency, for example) Refactoring

follows. Duplicates are removed from the code, and the code is generally edited in the

most acceptable form. Re-running tests will ensure that code functionality is not compro-

mised during refactoring.

BlueJ offers a set of tools for this purpose. In BlueJ, we create

a unit test for that class by clicking the class to be tested with

the right mouse button and selecting the option to create test

class. The given class then gets an inseparable partner - a unit

test. The test class will differentiate colorfully. As shown in the

picture.

If we want to perform the tests with the same set of objects. We can create a Unit test. We

create the tool by creating only those objects that we want them to contain in the test tool

in the object stack. Now right-click the test class and select Object Bench to Test Fixture.

Note that all messages we have sent since the last virtual machine restart have been rec-

orded. Therefore, if we want to be sure what is being done, restart the virtual machine

first and then create objects. If we want to overwrite an already stored object with other

objects, we simply create these objects and then choose Object Bench to Test Fixture.

The product is overwritten.

Alternatively, we can manually edit the test class.

To subsequently invoke objects, right click on the test class and choose Test Fixture to

Object Bench.

6.2. Create a test

Ideally, we first restart the virtual machine. Now right-click the unit test and select Create

test method. First, choose the name of the test method itself. Now BlueJ records our pro-

cedure for testing the product. We will do the required actions. During recording, BlueJ

will ask us to test the return value for selected methods. It is shown in the picture below.

During recording, the red light is on the left. If we want to stop recording without saving,

we choose: Cancel. To end and save, we choose to exit. Both are just below the red button.

If we want to test the test, right click on the unit test, where we select the test in the menu.

If we respond in the course of the test differently than the test return value. The test is

20

interrupted. A test results window opens, where we can learn in which part of the code

the error occurred.

21

7. DEBUGGER

It is a tool to help the programmer detect bugs in the program. To recall the debugger, we

must first place a stop in the code. Which we will do by clicking on the left column in the

code editor. On the appropriate line. The red stop mark appears here and the line is high-

lighted in red. As shown in the picture below. When the program runs, the program stops

at the stop point and a debugger window appears.

At the bottom of the debugger window (below), we have a total of 5 buttons.

● Stop to stop the program. It is useful, for example, if the program got stuck.

● Step to perform the next step of the code. The respective step is also graphically

indicated by the green color in the code editor.

● Step into in is quite similar to stepping. The difference is that when you call the

step method performs the whole method while stepping in, it will step step by step

on the called method.

● Continue the program normally will continue until its end, or the next stop.

● Terminate to exit the program execution. Alternatively, we can end the program

by restarting the virtual machine.

We can also add this new stops to the code during the process.

The debugger window itself is divided into several parts. In the top left, we can select a

specific thread. Under the choice of thread, the area is Calling order. This area could be

called a return address stack. All calls made during the program run are listed here. New

calls are ranked highest. When we click on a specific call, the code editor opens with the

class that contains the called method. Color is highlighted by the currently executed line.

22

In the right part of the debugger window, the Class Attributes are listed. These are class

attributes that belong to the currently selected folder in the Call Order.

Below is Instances Attributes. The instance attributes that belong to the selected item

in the Call Order are shown here. If we take a closer look at the instance attributes in our

example, we find that this instance contains two attributes. The crown attribute contains

a reference to the object. If you tap it, you will see a window with all the attributes of the

primitive types of the instance. Attribute trunk at any given time has no link anywhere.

(indicates null)

If the Local Variables also belonging to the currently selected item in Call Order are dis-

played below. The debugger here shows only variables that already have dedicated

memory and the assigned start value, that is, they are defined.

23

8. EXCEPTIONS

Until now, we assumed that the whole program "will fall" as soon as any unforeseen

events occur. However, this problem can be avoided by means of exceptions. In such sit-

uations, an exception will occur that immediately interrupts the run of the program and

the transition of the thread to the location where the situation is treated. If that is not the

case, the thread is terminated and since we only use one thread, the entire application

will fall. There are several kinds of exceptions that can be broken down according to the

cause of the unexpected situation:

 Error - critical error caused by, for example, lack of resources for the virtual ma-

chine - OutOfMemoryError, stack overflow - StackOverflowErrora similar. These

exceptions are generally not treated.

 RuntimeException - often a bug of the programmer, (eg, zero division - Arithmeti-

cException, invalid index - ArrayIndexOutOf BoundsException). To invoke this con-

dition, we do not need to declare the ability to invoke the method in the header.

 Exception of the user (instead of a phone number entering letters), or a non-exist-

ent file or a file of another type. We can often very easily react to such types of

exceptions. For example, let the user select the file once more. For such excep-

tions, we must always include the throws keyword and the list of called exception

classes.

8.1. Protected mode

The potentially problematic part of the code can be placed in the "protected mode using

try and compound brackets. This mode is a bit slower. However, if an error occurs - an

exception, the part contained in the catch is executed. The optional block finally will al-

ways be executed. Finally, it is often used for cleaning jobs exceptions when we return to

an exception, such as closing files, freeing up memory, and so on.

24

public static void exception () {

try {

int a = 5 / 0; //create exception

}

catch (Exception e)

{

System.out.println("An exception was taken ");

}

finally

{

System.out.println("The contents of the

block will always be processed.");

 }

 }

8.2. Throw

Alternatively, we can add the exception above using the throws keyword. This applies only

to the exceptions checked, in case it wants to pass the exception treatment to the calling

method.

As shown in the example:

if (index == null) {

throw new NullPointerException();

}

8.3. Throws

If we create a method that can create an exception we do not know or do not want to

treat. We explicitly tell the translator that we pass this exception to the top level treatment

using the throws + class exception

public static void read () throws IOException {

 ...

}

25

9. WORKING WITH FILES

Any information, data, or objects stored in the memory will be deleted when the program

is shut down. To preserve and reload them, we need to save them to a file.

For trouble-free data entry, it is best to store application data in the appdata folder. The

AppData or Application Data, or Application Data, contains data created by programs. In

this folder, it creates its own folder virtually every program that is installed on the com-

puter and then stores various data into it. The easiest way to get to this folder is to insert

files into the roaming subfolder in the %appdata% file explorer, the data in this folder

should follow the users on different computers within the domain.

The java.io package contains a File class that will provide us with all the important file-

handling tools. Many methods from the File class require a file name as their argument.

As an argument, you can use the String text string, or the instance of the File class. Which

is often the most optimal solution that lets us find some information or perform an oper-

ation in advance about the file.

You can create a file object in several ways:

● The name of the file - we create from an absolute or relative path that converts to

an abstract path.

● The name of the file relative to the parent - the abstract path will be created relative

to the parental path.

● Uniform Resource Identifier (URI) - Certain requirements must be met. E.g. the

path must not be empty.

For example, the file itself can be created using the URI in this way.

import java.io.File;

import java.io.IOException;

…

 public void createFile() throws IOException{

 File soubor = new File("C:\\Temp\\hello.txt");

 soubor.createNewFile();

 }

The file system may implement restrictions on certain operations on the current file sys-

tem object, such as read, write, and boot, which we call access permissions.

26

Instances of the File class are invariant; this means that once the instance is created, the

abstract path that the File object represents will never change.

The file class offers various methods for working with files. For example, we can work

with:

● File Path - The File object is an abstract path to the file. This way we can work

differently. Return methods returning the path to a file typically have a return value

of the text string type For example, by using:

o GetPath () gets an abstract path to the file

o getName () find out the name of the file

● File Information - There are several methods that return file information such as:

length (); canRead () or, for example, lastModified ()

● Directory Information - We have several methods for directory-only, such as list

() - returning a list of all files in the directory or Unix SheetRoots () Returning Fields

of All Directory Tree Root

● Working with files - We have different methods to work with files:

o RenameTo (File k) as a parameter specifies the next instance of the File ob-

ject.

o delete ()

o mkdir () directory creation

o setReadOnly ()

27

10. GRAPHICAL USER INTERFACE (GUI)

It is the graphical environment the regular user encounters and works with. We all know

very well the individual components of this environment. These include, for example, but-

tons, roller blinds, sliders, and the like. Different graphics libraries such as AWT (Abstract

Windowing Toolkit), JFC (Java Foundation Classes) are available in Java. For BlueJ you can

install Simple GUI Designer Extension. Which can simplify GUI creation. This paper will

discuss how to work with JFC, also known as Swing.

10.1. First application

When creating an application with a graphical user environment in which the application

will run. We must first create a "window" (frame). We will use the JFrame class. There are

multiple options for creating a window. We created the ConstructGui class that inherits

from the JFrame class. In this class we created a nonparametric constructor. We put a

button and label in the class.

Another common component that we did not use in this example is the write field (JText-

Field). It would be declared as follows:

JTextField someName = new JTextField("Text", 6)

As parameter enter the text that will be displayed in the field. Next, there is a number that

indicates how many characters the de field should fit.

We have set the layout of components in FlowLayout. Due to FlowLayout, it was necessary

to import java.awt.

The individual components needed to be added to the window. What we did using the

add () method, which specifies the name of the added object as the parameter.

28

import java.awt.*;

import javax.swing.*;

public class ConstructionGui extends JFrame {

 private JButton button;

 private JLabel value;

 public ConstructionGui()

 {

 FlowLayout layout = new FlowLayout();

 setLayout(layout);

 value = new JLabel("Total:");

 add(value);

 button = new JButton("Add 1");

 add(button);

 }

}

Afterwards we created another class with the name FirstGUI. With the method main. In

the method main we created objects with the class ConstructionGUI. In this object we

selected various basic methds. We imported a library of data, in order to use the function

date(), which writes us todays date into the title window.

import java.awt.*;

import javax.swing.*;

public class ConstructionGui extends JFrame {

 private JButton button;

 private JLabel value;

 public ConstructionGui()

 {

 FlowLayout layout = new FlowLayout();

 setLayout(layout);

 value = new JLabel("Total");

 add(value);

 button = new JButton("Add 1");

 add(button);

 }}

29

The result looks like this:

The each components are centered. If we scale the window, they will be subordinated..

30

11. EVENTS

At present, we have created a simple single-label window. However, nothing happens

when the button is tapped. So we use events to add functionality to our window. The

principle of events is that in the GUI we call for instance an event on the push button. The

event we created the event is an event listener The method of doing something is invoked

at the event listener. In our case, we create the Button and Button Counter buttons from

the Label. The complete code is on the next page.

We added another class named EventCost to the ConstructionGui class. Thanks to this, it

has access to ConstructionGui components. We have implemented ActionListener in the

EventCost class. It is necessary to import java.awt.event. *;

The ActionListener class contains only one return action method actionPerformed (Ac-

tionEvent e) in which we define what happens when an event is invoked. In our case,

counting is a push of a button.

In the constructor, we've created event listeners - an object named MyCount. We have

assigned a button to the number of the listener.

 EventCost MyCount = new EventCost();

 MyButton.addActionListener(MyCount);

The result looks like this:

31

import java.awt.*;

import javax.swing.*;

import java.awt.event.*;

public class ConstructionGui extends JFrame {

 private JButton MyButton;

 private JLabel MyValue;

 int MyNumber = 0;

 public ConstructionGui()

 {

 FlowLayout layout = new FlowLayout();

 setLayout(layout);

 MyValue = new JLabel("Not squeezed ");

 add(MyValue);

 MyButton = new JButton("Add 1");

 add(MyButton);

 EventCost MyCount = new EventCost();

 MyButton.addActionListener(MyCount);

 }

 public class EventCost implements ActionListener {

 public void actionPerformed(ActionEvent e) {

 MyNumber = MyNumber + 1;

 MyValue.setText("Totally squeezed: " + MyNumber);

 }

}

}

	Object-oriented Java programming
	Object-oriented Java programming

