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1. BASIC STATICS TERMS, PRINCIPLES 
AND AXIOMS 

1.1. Basic terms 

Rigid body 

 

It refers to a perfectly rigid body. It is a figure, body where the distance between any two 

randomly selected points does not change due to the movement of the body. 

 

Particle  

 

Physical object whose dimensions are negligible. In statics, point it refers to the point of a 

rigid in which all the weight of the entire rigid is concentrated.   

 

Force and moment 

 

Force is a basic measure of two objects mutual effect. Force is a vector quantity. Force is 

a vector linked to a line.  

 
Figure 1.1 

 

 Force in space (Figure 1.1a) is determined by 6 parameters: point of application A(x, 

y, z) – 3 parameters,  size F – 1 parameter, position f and direction – angles α, β, (γ) 

– 2 independent parameters, since the angles are mutually linkeded as follows: 

 

𝑐𝑜𝑠2𝛼 + 𝑐𝑜𝑠2𝛽 + 𝑐𝑜𝑠2𝛾 = 1. 
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 Force in plane (Figure 1.1b) is determined by 4 parameters: A(x, y), F, α (β), since 

 

𝛼 + 𝛽 =
𝜋

2
 

a𝑐𝑜𝑠2𝛼 + 𝑐𝑜𝑠2𝛽 = 1. 

Force effect 

 

 Sliding – identical for all points of the object on which the force is acting. It is equal 

to the force, 

 

 Rotational – different for different points of the object. The size of the rotational 

effect depends on the perpendicular distance between the point and the force 

bearer and is determined by the moment to the relevant point.  

 

Moment – is a vector defined as a vector product  𝑀 = 𝑟 × 𝐹. Absolute size of moment to 

any point, e.g. A equals to the product of force and the moment arm – its perpendicular 

distance from this point (Figure 1.2). 

 
Figure 1.2 

 

The direction of the moment vector is given by the direction of the rotation of the force 𝐹 

to the point A. Moment is positive if the rotation is anticlockwise. 

 

Moment vector is represented as a vector perpendicular to the plane of rotation. The di-

rection of the vector is determined using the right hand rule (fingers of right hand show 

the direction of the rotation, thumb showing the direction of the vector 𝑀 (Figure 1.3). 

 
Figure 1.3 
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Force couple (pure moment) – two parallel forces, equal in magnitude x with different 

line of action. Force couple does not have sliding effect, only a rotational effect equal to 

the product of one force and the perpendicular distance between the forces. The effect 

of the force couple is given by its moment (Figure 1.4) 

𝑀 = 𝑝 𝐹. 

Vector of force couple momentum 𝑀 is a free vector, which means it could be freely 

moved in the space and is perpendicular to the plane of force couple action. 

 
Figure 1.4 

 

1.2. Force and moment units 

The force unit is 1 Newton [N]. It is a force producing acceleration of 1ms-2 to 1 kg of 

weight, that is 

 

1𝑁 = 1𝑘𝑔. 𝑚. 𝑠−2. 

 

The moment unit is 1N.m [Nm] 

1.3. Force systems 

Two and more forces acting on one object create a force system. 

 

 If a force system can be replaced by one force 𝑅, this force is called the force sys-

tem resultant.  A force system has a sliding effect in the direction of the resultant 

𝑅 bearer (Figure 1.5). 
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Figure 1.5 

 

 If a force system can be replaced by one moment 𝑀𝑣, this moment is called result-

ing moment of the given force system. The force system thus has a rotational effect 

in the plane perpendicular to the moment 𝑀𝑣 (Figure 1.6). 

 
Figure 1.6 

 

 In general, force system has both sliding and rotational effect. 

 Force system is balanced if the resulting sliding and rotational effect is zero. The 

simplest balanced force system consists of two forces on one bearer, which are of 

equal magnitude and different direction (Figure 1.7). 

 

 
Figure 1.7 

1.4. Classification of forces by acting 

 External forces (Figure 1.8a), representing the effect of the surrounding objects on 

the examined object. These include the loading forces - primary (𝐹) and binding 

reactions – secondary (𝐴), depending on the loading forces, 
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 internal (Figure 1.8b), representing the effect of one part of a rigid (system) on an-

other one (𝑁1, 𝑁1
´). Internal forces are caused by external forces. 

 
Figure 1.8 

1.5. Decomposition of force, force components 

Force 𝐹 in at a given point in a plane can be divided into two components 𝐹1, 𝐹2. If a force 

𝐹 and directions of its components bearer are given (determined by angles α, β), we can 

determine the magnitude of the components 𝐹1, 𝐹2 (Figure 1.9). If a force 𝐹 is a resultant 

of the forces 𝐹1 and 𝐹2, then 𝐹 = 𝐹1 + 𝐹2. 

 
Figure 1.9 

 

In the space, the forces can be divided into three components (Figure 1.10a). 

 
Figure 1.10 
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𝐹 = 𝐹1 + 𝐹23 

𝐹23 = 𝐹2 + 𝐹3 

𝐹 = 𝐹1 + 𝐹2 + 𝐹3 

 

If the force components are mutually perpendicular, coordinate axes can be placed in 

their directions. They will be marked 𝐹𝑥, 𝐹𝑦, 𝐹𝑧 and called right-angled components of the 

given force (Figure 1.10b). 

 
𝐹 = 𝐹𝑥 + 𝐹𝑦 + 𝐹𝑧  

 

In a rectangular coordinate system, the magnitudes of the components are as follows: 

 
𝐹𝑥 = 𝐹. 𝑖 = 𝐹 𝑐𝑜𝑠 𝑐𝑜𝑠 𝛼   

𝐹𝑦 = 𝐹. 𝑗 = 𝐹 𝑐𝑜𝑠 𝑐𝑜𝑠 𝛽    𝑖, 𝑗, 𝑘 – unit vectors 

𝐹𝑧 = 𝐹. 𝑘 = 𝐹 𝑐𝑜𝑠 𝑐𝑜𝑠 𝛾   

 

Components can be expressed as follows: 
𝐹𝑥 = 𝐹𝑥𝑖  

𝐹𝑦 = 𝐹𝑦𝑗  

𝐹𝑧 = 𝐹𝑧𝑘  

 

Resulting force is described as follows: 
𝐹 = 𝐹𝑥𝑖 + 𝐹𝑦𝑗 + 𝐹𝑧𝑘  

If we know the magnitude of the force components, its magnitude can be calculated as 

follows: 

𝐹 = √𝐹𝑥
2 + 𝐹𝑦

2 + 𝐹𝑧
2  

 

And its direction can be determined by means of angles α, β, (γ): 

𝑐𝑜𝑠 𝑐𝑜𝑠 𝛼 =
𝐹𝑥

𝐹
  , =

𝐹𝑦

𝐹
 , 𝑐𝑜𝑠 𝑐𝑜𝑠 𝛾 =

𝐹𝑧

𝐹
 . 

1.5.1. Varignon´s theorem 

Force moment to a given point equals to the sum of components moments to the same 

point. According to Figure 1.11 the moment of force 𝐹 to point 0 is 𝑀0 = 𝑟 × 𝐹. 
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Figure 1.11 

 

Moment of force  𝐹 to point 0 is 𝑀0 = 𝑟 × 𝐹,  because 

𝐹 = 𝐹𝑥 + 𝐹𝑦 + 𝐹𝑧 ,  

𝑀0 = 𝑟 × (𝐹𝑥 + 𝐹𝑦 + 𝐹𝑧),  

𝑀0 = 𝑟 × 𝐹𝑥 + 𝑟 × 𝐹𝑦 + 𝑟 × 𝐹𝑧, a teda 

𝑀0 = 𝑀0𝐹𝑥 + 𝑀0𝐹𝑦 + 𝑀0𝐹𝑧. 

1.6. Basic static principles and axioms  

Axiom is a basic proposition that is accepted without evidence. Usually it is based on ex-

perimental experience.  

 

Classical mechanics is based on three basic Newton laws: 

 

 Law of inertia (1st Newton law) 

 Law of force (2nd Newton law) 

 Law of action-reaction (3rd Newton law) 

 

Statics is based on the following axioms: 

1.6.1. Axiom of inertia (1st Newton law) 

An object which is at rest or uniform direct motion remains in this state if no external 

force acts on it or if a balanced force system acts on it.  
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1.6.2. Axiom of action-reaction (3rd Newton law) 

For every action, there is a reaction of the same magnitude and different direction. This 

means that the effect of one object to another is the same as the effect of the second 

object to the first, but with different direction (Figure 1.12). 

 
𝐹12 + 𝐹21 = 0  

𝐹12 = −𝐹21  

 
Figure 1.12 

1.6.3. Axiom of preserving effect 

The effect of a given force system does not change if a balanced force system is added or 

removed. 

1.6.4. Axiom of forces composing   

The resultant 𝑅 of two concurrent forces 𝐹1 a 𝐹2 equals to their vectors sum 𝑅 = 𝐹1 + 𝐹2 

and passes through the point of intersection of their lines of action (Figure 1.13). 

 

 
Figure 1.13 
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Example 1 

 

At the beginning of the selected coordinate system 0, x, y, force 𝐹 of magnitude F = 6kN 

(Figure 1.1.1) is acting. The direction of the line of action of the force 𝐹 is given by the angle 

α = 30°. Divide the force 𝐹 into its components 𝐹𝑥, 𝐹𝑦, whose lines of action fx, fy are iden-

tical with the coordinate system axes  x, y.    

 

 
Figure 1.1.1 

 

Solution: Dividing the force 𝐹, which lies on the line of action f, whose compositions are 

replacements by the equivalent force system 𝐹𝑥, 𝐹𝑦, lying on the lines of action fx, fy. If the 

lines of action fx, fy are identical with the coordinate system axes x, y, then forces 𝐹𝑥, 𝐹𝑦 are 

coordinate components of force 𝐹 in a given coordinate system. The solution is based on 

the vector substitution condition (a), where the division of force  𝐹 can be done in several 

ways. 

 
𝐹 = 𝐹𝑥 + 𝐹𝑦           

 (a)  

 

Analytical solution: 

 

 Solution by means of directional angles cosines α, β of the 𝐹 line of action of the 

force with the line of action of the force fx, fy (Figure 1.1.2) 

 
Figure 1.1.2 

 
𝛽 = 90° − 𝛼 = 90° − 30° = 60° 
𝐹𝑥 = 𝐹 𝑐𝑜𝑠 𝑐𝑜𝑠 𝛼 = 6 𝑐𝑜𝑠 𝑐𝑜𝑠 30° = 5,196𝑘𝑁 
𝐹𝑦 = 𝐹 𝑐𝑜𝑠 𝑐𝑜𝑠 𝛽 = 6 𝑐𝑜𝑠 𝑐𝑜𝑠 60° = 3𝑘𝑁 
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 Another solution is using trigonometric relations of a right triangle. According to 

Figure 1.1.3 for magnitudes 𝐹, 𝐹𝑥 , 𝐹𝑦 it holds true that: 

 

𝑐𝑜𝑠 𝑐𝑜𝑠 𝛼 =
𝐹𝑥

𝐹
⇒  𝐹𝑥 = 𝐹 𝑐𝑜𝑠 𝑐𝑜𝑠 𝛼 = 6 𝑐𝑜𝑠 𝑐𝑜𝑠 30° = 5,196𝑘𝑁 

𝑐𝑜𝑠 𝑐𝑜𝑠 𝛼 =
𝐹

𝐹𝑦
⇒  𝐹𝑦 = 𝐹 𝑠𝑖𝑛 𝑠𝑖𝑛 𝛼 = 6 𝑠𝑖𝑛 𝑠𝑖𝑛 30° = 3𝑘𝑁 

 

 
Figure 1.1.3 

 

Graphic solution: Force 𝐹 can be replaced by the equivalent force system 𝐹𝑥, 𝐹𝑦. It is a 

graphical sum of force vectors in so-called free-body diagram, where force 𝐹 as a resultant 

of two concurrent forces with a common point of application, applied to a free-body dia-

gram in any order, is an oriented line starting from the starting point of the first force and 

entering the end point of the second force. 

 

The solution is based on Figure 1.1.4a, where we draw the know force 𝐹 and the parame-

ters of the sought forces. In the case of forces 𝐹𝑥, 𝐹𝑦 their lines of action of the force are 

known. In this figure, it is important to draw correctly the vectors of the individual forces 

(their directions). Free-body diagram (Figure 1.1.4b) will be created as follows:  

 

We apply force 𝐹 on the parallel with the line of action of the force f in appropriately cho-

sen force magnitudes mF. The starting and end point of the force 𝐹 vector are parallel 

lines with lines of action of the force fx, fy in any order. The result is a closed triangle, whose 

legs represent the magnitudes of the forces sought. The direction of these forces in the 

free-body diagram is opposite to the direction of their resultant 𝐹. By measuring the 

length of the graphical representations of the forces sought and their comparing with the 

force measure generates the actual magnitude of these forces.   
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Figure 1.1.4 

 
𝐹𝑥𝑔 = 5,2𝑐𝑚 ⇒ 𝐹𝑥 = 𝐹𝑥𝑔𝑚𝐹 = 5,2𝑘𝑁  

𝐹𝑦𝑔 = 3𝑐𝑚 ⇒ 𝐹𝑦 = 𝐹𝑦𝑔𝑚𝐹 = 3𝑘𝑁  
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2. MOBILITY AND LINKS OF MATERIAL 
OBJECTS 

2.1. Links and links dependency 

Force systems act on specific material object (particle, rigid body, system of rigid bodies, 

system of particles). Material objects can be placed freely in plane or in space, that is, with 

an unlimited possibility to move, or are linked by links that reduce their ability to move. In 

these links forces are generated – so called links reactions. 

 

The links by which the system is attached to a stationary rigid body – so-called frame, are 

external links and reactions arising in them are external reactions (Figure 2.1). 

 

If a mechanical system (system of rigid bodies, particles) consists of several objects, the 

links between them are inner links and reactions in them are internal reactions. 

 
Figure 2.1 

 

The links reduce the mobility of material objects, while the individual types of links can 

prevent only certain object movements. The binding reactions (secondary forces) induced 

by object loading by external, loading (primary) forces, they can act only in the direction 

in which the links are able to prevent the movement.   

 

If the link prevents the movement only on one side, it is referred to as a unilateral binding 

(or force). Figure 2.2a shows an example of link by one-sided bracing, Figure 2.2b shows 

an example of a rope link. 

 
Figure 2.2 
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If the link prevents the movement on both sides, it is referred to as a bilateral link. Figure 

2.3a shows an example of a double-sided binding, Figure 2.3b shows an example of vazby 

prutem. 

 
Figure 2.3 

2.2. Degrees of freedom of movement and link 
dependency of rigid bodies 

The number of degrees of degrees of freedom is a number of all independent parameters, 

which determine the object position in a plane or space. It also expresses the number of 

possible movements the given object can execute in a plane or space.  

 

Mobility or immobility (kinematic determinacy) of a material object is assessed by its link 

dependency: 

 
𝑖 = 𝑣 − 𝑢  

 

where: i – is a number of degrees of freedom of a material object 

 v – is a number of degrees of freedom of a free, not linked object 

 u – is a number of degrees of freedom removed by links 

2.3. Kinematic and static determinacy 

When assessing kinematic determinacy, i.e. mobility or immobility of a material object, 

the link dependency is expressed as follows:  

 

 𝑖 = 𝑣 − 𝑢 = 0, the task is kinematically determinate. Links reduce all possibilities of 

movement, the position of the object is predetermined. 

 𝑖 = 𝑣 − 𝑢 > 0, the task is kinematically indeterminate. Links reduce less degrees of 

freedom of a free object. The position of an object can change. 

 𝑖 = 𝑣 − 𝑢 < 0, the task is kinematically overdetermined. Links reduce more degrees 

of freedom, its position is overdetermined.   

 

By analysing static determinacy it is possible to assess whether there is a sufficient num-

ber of conditions, i.e. conditions for equilibrium to determine the unknown parameters 
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of link reactions. Since 𝑣 = 𝑟; 𝑢 = 𝑛𝑝, it holds true that aj 𝑖 = 𝑖𝑆, we can simultaneously 

assess both kinematic and static determinacy of tasks: 

 

> the task is kinematically indeterminate, statically over-

determined  

𝑖 = 𝑖𝑆 = 𝑣 − 𝑢 = 𝑟 − 𝑛𝑝  = 0 the task is kinematically and statically determined 

< the task is kinematically overdetermined, statically in-

determinate 

where: iS – degree of static determinacy 

 r – number of independent conditions of equilibrium 

 np – number of unknown parameters of link reactions 

 

Statically indeterminate ÚLOHA cannot be solved only by using static methods. Such tasks 

are solved in terms of flexibility and strength, which determine other, so-called defor-

mation conditions.   
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3.PARTICLE IN PLANE 

3.1. Degree of freedom and link dependence of 
particle in plane 

The position of free particle M in the plane determined by the coordinate system 0, x, y 

(Figure 2.4) is determined by two independent parameters xM, yM. Particle thus has two 

degrees of freedom of movement 𝑣 = 2, that is, is able to perform two independent move-

ments (placement of axes x and y) and link dependence is: 

 

   > 

𝑖 = 𝑣 − 𝑢 = 2 − 𝑢  = 0 

   < 

 

 

 

 
Figure 2.5 

 

 

 
Figure 2.4 
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3.2. Links of particle in plane 

Particle in the fix plane to the curve 𝑦 = 𝑓(𝑥) can move only tangentially (see Figure 2.5). 

The movement in the direction of the normal is reduced, therefore the possible link reac-

tions in particle loading is a normal reaction. The position of the particle is determined by 

one data, e.g. by coordinate𝑥𝑀; [𝑦𝑀 = 𝑓(𝑥𝑀)]; therefore the particle linked to planar curve 

has at least one degree of freedom of movement.   

 

 
Figure 2.6 

 

A particle can be linked to one planar curve by a bar (Figure 2.6a), or groove, e.g. sliding 

block (kámen v kulise) (Figure 2.6d). Such VAZBY are bilateral (forced), and can produce a 

reaction to both directions (Figure 2.6e,f). Rope links (Figure 2.6b) and linkage by leaning 

(Figure 2.6c) take away one degree of freedom of movement from the particle in the plane, 

but only on one side. These are referred to as unilateral (force) links.   

 

Particle linked to two curves at the same time (Figure 2.7a) has been taken 2 degrees of 

freedom of movement and has no possibility to move. Such a link can be realized e.g. by 

two bars (Figure 2.7b). 
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Figure 2.7 

3.3. Particle in space 

3.3.1. Degrees of freedom and link dependence of 
particle in space 

The position of a free particle M in the space is determined by 3 parameters. In orthogonal 

coordinate system 0, x, y, z these are the following three coordinates: xM, yM, zM (Figure 

2.8). A free particle has three degrees of freedom of movement in the space (𝑣 = 3), which 

means it can perform three independent movements (moving in the direction of the axis 

x, y, z) and its link dependence is as follows: 

   > 

𝑖 = 𝑣 − 𝑢 = 3 − 𝑢  = 0 

   < 

 
Figure 2.8 
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3.3.2. Links of particle in space 

 

A rigid body in space can be linked to surface (Figure 2.9a), e.g. by a bar or a rope to a 

round surface (Figure2.9b), placing on a plane (Figure 2.9c) etc. This way we take away one 

degree of freedom of movement in the direction of the normal to the surface, or in the 

direction of a rod. 
𝑢 = 1, 𝑖 = 3 − 𝑢 = 3 − 1 = 2  

 
Figure 2.9 

 

If we connect a particle in the space to two surfaces (Figure 2.10a), we will take away two 

degrees of freedom of movement. It is actually connected in the intersection, i.e. to the 

spatial curve. A realization of this link is e.g. by two bars (Figure 2.10b). 

 
𝑢 = 2, 𝑖 = 3 − 𝑢 = 3 − 2 = 1  

 

By connecting a particle to three surfaces that intersect in a given point, all three degrees 

of freedom are removed. This is e.g. link by three bars that must not lie in the same plane. 

They musts create so-called bearing block (Figure 2.11). 

 

 
Figure 2.10 
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Figure 2.11 

3.4. Rigid body in plane 

3.4.1. Degrees of freedom of rigid body in plane 

The position of a rigid in the plane (0, x, y) is determined by three parameters. These can 

be coordinates of point A (xA, yA) and angle ϕ of the line joining A and B (Figure 2.12), or 

two coordinates of point A and one coordinate of point B. The second coordinate of point 

B is given by the fact, that the distance 𝐴𝐵 is constant.  

 
Figure 2.12 
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A free rigid in the plane can perform three independent movements: movement in the 

direction of the coordinate axes x and y and rotation around any point (A or B). A rigid 

body in the plane has three degrees of freedom of movement and its link dependence is 

expressed as follows: 

   > 

𝑖 = 𝑣 − 𝑢 = 3 − 𝑢  = 0 

   < 

3.4.2. Links of body in the plane 

By the individual links, it is possible to remove one, two or three degrees of freedom.  In 

each link a linking reaction can arise, depending on the type of load force system. 

 

Links that leave certain mobility are referred to as kinematic couples. They can be kine-

matic couples of first (u = 1), or second class (u = 2). 

 

Higher, general kinematic couple removes one degree of freedom (u =  1). 

 

In a (linkage by leaning), one rigid particle leans by its edge against the surface of other 

particle, while the surfaces of the rigid particles shall be perfectly rigid. Removed possibil-

ity of movement and possible reaction are in the common normal (Figure 2.13a). 

 

One degree of freedom of movement is removed by means of another rigid particle, so-

called Binary member. Binary member serves as a linking agent between a frame and a 

particle with which it is connected by rotational or sliding link. It is not loaded by any ex-

ternal forces, only reaction of a particle and frame lying on the same force bearer are 

acting on it being of the same magnitude and opposite direction. Such binary members, 

used as links of a particle to a frame are:  

 

 Sliding bearing (Figure 2. 13b) – joint on one side, movable linkage on the other 

side. The common bearer must pass over the joint. Link must be unilateral or bi-

lateral.  

 Bar (Figure 2.13c) – joints on both sides, common bearer is in their link. The link is 

bilateral, the bar can be drawn or pushed (Figure 2.13d). 



23 
 

 

 
Figure 2.13 

Lower kinematic couples (u = 2) remove two degrees of freedom of movement. They in-

clude the following links: 

 

 Rotational link (joint) (Figure 2.14a) removes two movements in the direction of 

axes x and y. Two parameters are unknown, e.g. magnitude and direction of the 

reaction. The link leaves the particle a possibility to rotate around the fixed centre 

of the A rotation. 

 Slider link (Figure) leaves a possibility of movement in one direction and removes 

a possibility of movement in a perpendicular direction and the possibility of rota-

tion in the plane. The unknown parameters are force and moment magnitude. 

 Rolling link (Figure) is determined by friction between the particles, removes the 

possibility of two movements – in the direction of a normal and tangent (reaction 

FN a FT), enables a rolling motion without shear, that is, a possibility of rotation of 

the particle.  
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A particle can be rigidly fixed with other particle, e.g. with a frame by means of so-

called restraint (Figure 3.7), which removes all three degrees of freedom of movement 

from the particle in the plane.  
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4. RIGID IN SPACE 

4.1. Degrees of freedom and linkage depend-
ency of particle in space 

The position of a rigid in the space 0, x, y, z is determined by six parameters. These can be 

3 coordinates of point A, two coordinates of point B and one coordinate of point C (Figure 

). Other coordinates of points B and C are linked by fixed distances between the points. 

For a particle in the space it is v = 6. A free particle in the space has a possibility of six 

independent movements: movement in the direction of axes x, y and z, and rotation 

around these three coordinate axes. It has six degrees of freedom of movement and its 

linkage dependency is as follows: 

   > 

𝑖 = 𝑣 − 𝑢 = 6 − 𝑢  = 0 

   < 

 
 

4.2. Links of body in the space 

According to the type of link, it is possible to remove 1 – 6 degrees of freedom of move-

ment. The Figure shows individual types of links of a body in the space with marked 

changes that can occur after loading the body: 

 

 One degree of freedom of movement (u = 1) is removed by link by sliding bearing 

on rollers (Figure c) and a link by a bar. 

 Two degrees of freedom of movement (u = 2) are removed by link by sliding bear-

ing on pins (Figure d). 
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 Three degrees of freedom of movement (u = 3) are removed by link by spatial joint 

(Figure b) 

 Five degrees of freedom of movement (u = 5) are removed by so-called link by 

cylindrical joint (Figure e) 

 Fixed link – by restraint (Figure a), we remove all six degrees of freedom of move-

ment (u = 6). 
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5. COPLANAR FORCE SYSTEMS, PAR-
TICLE EQUILIBRIUM 

5.1. Linear force system – LFS 

5.1.1. Replacing linear force system 

If all forces act in one line on the given object, they can be replaced by one force 𝑅 (result-

ant), whose line of action is identical with the line of action of all the forces. The axis x with 

a unit vector 𝑖 represents a line of action of force 𝐹𝑖 (Figure ). 

 
If 𝑅 = 𝑅. 𝑖, 𝐹𝑖 = 𝐹𝑖 . 𝑖, then 𝑅. 𝑖 = ∑ 𝐹𝑖. 𝑖. The resultant magnitude equals to algebraic sum 

of forces 𝑅 = ∑ 𝐹𝑖. 

 

5.2. Equilibrium of linear force system 

The condition of LFS equilibrium is 𝑅 = 0, that is ∑ 𝐹𝑖 = 0 . 

In the graph, this equation is marked as a closed, so-called SILOVÝ OBRAZEC (Figure ). 

 
In analytical solution, the equilibrium condition is expressed in scalar form by one force 

equilibrium condition 𝑅 = 0, that is Ʃ𝐹𝑖 =  0. 

 

LFS equilibrium can also be expressed using condition of moment to any point B (Figure 

), which does not lie on the line of action of the LFS. 

 

∑ 𝑀𝑖𝐵 = 𝑝 ∑ 𝐹𝑖 = 0  

 

For linear force system, there is only one independent static condition, that is, from static 

equilibrium conditions only one unknown parameter can be calculated.  
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5.3. Central planar force system CPFS 

5.3.1. Replacing central planar force system 

All forces 𝐹𝑖 of the given force system pass through point 0 and lie in one plane 0, x, y 

(Figure a). This way the force system can be replaced by resultant 𝑅 = 𝑆, which passes 

through point 0 (Figure b). 

 
𝑅 = ∑ 𝐹𝑖  

 

After expressing the force vectors by means of their components, the resultant is 𝑅𝑥. 𝑖 +

𝑅𝑦. 𝑗 = ∑ 𝐹𝑖𝑥 . 𝑖 + ∑ 𝐹𝑖𝑦. 𝑗. 

 

 If we multiply the equation 𝑅𝑥 . 𝑖 + 𝑅𝑦. 𝑗 = ∑ 𝐹𝑖𝑥 . 𝑖 + ∑ 𝐹𝑖𝑦. 𝑗 by scalar unit vec-

tors 𝑖 and 𝑗, the conditions of replacing CPFS are expressed by two scalar equa-

tions: 𝑅𝑥 = ∑ 𝐹𝑖𝑥 = ∑ 𝐹𝑖 𝑐𝑜𝑠 𝑐𝑜𝑠 𝛼𝑖  and 𝑅𝑦 = ∑ 𝐹𝑖𝑦 = ∑ 𝐹𝑖 𝑠𝑖𝑛 𝑠𝑖𝑛 𝛼𝑖  . 

The magnitude and direction of the resultant is thus 𝑅 = √𝑅𝑥
2 + 𝑅𝑦

2, 𝑐𝑜𝑠 𝑐𝑜𝑠 𝛼𝑅  =
𝑅𝑥

𝑅
. 

 In the graph, the resultant 𝑅 passes through the central of forces 0 (Figure ) and it 

is determined by their vector sum in so-called force pattern. 

 

 𝑅 = ∑ 𝐹𝑖  

𝑅 = 𝐹1 + 𝐹2 + 𝐹3  
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6. CENTRAL PLANAR FORCE SYSTEM 
EQUILIBRIUM 

The equilibrium condition is 𝑅 = 0, that is ∑ 𝐹𝑖 = 0. 

 

 In analytical solution, two independent equilibrium conditions can be expressed 

by either two component equations or the component equations can be replaced 

by momentum (using Varignon´s theorem.  

 

 1st alternative: component equations 

𝑅𝑥 = 0, that is ∑ 𝐹𝑖𝑥 = 0 

𝑅𝑦 = 0, that is ∑ 𝐹𝑖𝑦 = 0 

2nd alternative: momentum equations 

 

(∑ 𝑀𝑖)
𝐴

= 0  

(∑ 𝑀𝑖)
𝐵

= 0  

Points A, B and central of forces 0 must not lie on one line! 

 

 3rd alternative: 1 component and 1 momentum equation 

∑ 𝐹𝑖𝑥 = 0  

(∑ 𝑀𝑖)
𝐵

= 0  

 

 Point B must not lie on the axis x! The joining line of central of forces with point B 

must not be perpendicular to the axis in which the forces are represented. 

 

 In graph solution (Figure ) the basis is the condition of closing force pattern with 

the forces, corresponding to the vector equilibrium condition 𝑅 = 0. 

 
 

For CPFS only two static conditions can be written from which we can calculate two un-

known parameters. 
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6.1. Central spatial force system – CSFS 

6.1.1. Replacing central spatial force system 

At one point, central spatial force system n is acting. Each force of this system is deter-

mined by its magnitude and direction (Figure a). All forces can be replaced by one force, 

the resultant 𝑅 (Figure b), which must pass through the common central of forces. Force 

𝑅 as a resultant completely replaces the given CSFS. 

 

 
In a rectangular coordinate system 0, x, y, z, the resultant 𝑅 can be divided into the com-

ponents 

 

𝑅𝑥, 𝑅𝑦, 𝑅𝑧 (Figure ). 

𝑅 = 𝑅𝑥 + 𝑅𝑦 + 𝑅𝑧  

 

The conditions for replacing CSFS are relations for determining the resultant: 

 

𝑅𝑥 = ∑ 𝐹𝑖𝑥 = ∑ 𝐹𝑖 𝑐𝑜𝑠 𝑐𝑜𝑠 𝛼𝑖   

𝑅𝑦 = ∑ 𝐹𝑖𝑦 = ∑ 𝐹𝑖 𝑐𝑜𝑠 𝑐𝑜𝑠 𝛽𝑖   

𝑅𝑧 = ∑ 𝐹𝑖𝑧 = ∑ 𝐹𝑖 𝑐𝑜𝑠 𝑐𝑜𝑠 𝛾𝑖   

 

The resultant magnitude is 𝑅 = √𝑅𝑥
2 + 𝑅𝑦

2 + 𝑅𝑧
2. 

 

The position of the resultant is calculated as: 𝑐𝑜𝑠 𝑐𝑜𝑠 𝛼𝑅 =
𝑅𝑥

𝑅
 , 𝑐𝑜𝑠 𝑐𝑜𝑠 𝛽𝑅 =

𝑅𝑦

𝑅
 , (𝑐𝑜𝑠 𝑐𝑜𝑠 𝛾𝑅 =

𝑅𝑧

𝑅
 ). 
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6.1.2. Central spatial force system equilibrium 

CSFS will be balanced if the resultat 𝑅 is zero. (This indicates that the resulting sliding and 

rotational effect to any point in the space equals zero). 

 

 1st alternative: component equation 

∑ 𝐹𝑖𝑥 = 0  

∑ 𝐹𝑖𝑦 = 0  

∑ 𝐹𝑖𝑦 = 0  

 

 2nd alternative: momentum equations 

On the basis of Varignon´s theorem, the equilibrium conditions can be expressed 

also by momentum equations with regard to any axes in the space.   

(∑ 𝑀𝑖)
𝑎

= 0  

(∑ 𝑀𝑖)
𝑏

= 0  

(∑ 𝑀𝑖)
𝑐

= 0  

Neither of the axes a, b, or c can pass through the common central of the force sys-

tem, and the axes a, b, c cannot meet in one point or be parallel to each other.   

 

 3rd alternative: 2 momentum and 1 component equation 

(∑ 𝑀𝑖)
𝑎

= 0  

(∑ 𝑀𝑖)
𝑏

= 0  

∑ 𝐹𝑖𝑥 = 0  

The axes a, b must not pass through the central of the force system. They cannot 

intersect in the plane passing through the central of the CSFS and is perpendicular to 

axis x. The axes a, b must not be parallel if they are at the same time parallel with the 

axis mentioned above.  

 

 4th alternative: 2 component and 1 momentum equation 

∑ 𝐹𝑖𝑥 = 0  

∑ 𝐹𝑖𝑦 = 0  

(∑ 𝑀𝑖)
𝑎

= 0  

The axis a cannot pass through the central of the CSFS and must not be perpendicular 

to the space determined by the axes x, y. 

Like in the plane, in the space in terms of analytical solution we always assume the 

orientation of unknown forces. If the result is positive (+), the orientation/ direction 

assumed was right, if it is negative (-), the actual orientation of the force is opposite 

to the assumed one.   
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7. GENERAL FORCE SYSTEMS. PARALLEL 
FORCE SYSTEMS. EQUILIBRIUM OF RI-
GID BODIES 

7.1. General planar force system. Analytical so-
lution 

 

 

 
General planar force system consists of forces distributed in the plane (e.g. in plane x, y 

shown in Figure a). The effect of each force 𝐹 at the beginning of a coordinate system 0, 

x, y will be both sliding 𝐹𝑖 and rotational 𝑀𝑖0. The resulting sliding and rotational effect of 

the force system to the starting point in point 0 will be (Figure ): 

 

𝑆 = ∑ 𝐹𝑖  

𝑀0 = ∑ 𝑀𝑖0  

 

There can be the following cases: 

 

𝑆 ≠ 0, 𝑀0 ≠ 0 – the system resultant is 𝑅 – not passing the point 0 

𝑆 ≠ 0, 𝑀0 = 0 – the system resultant is 𝑅 – passing through the point 0 

𝑆 = 0, 𝑀0 ≠ 0 – the system is replaced by force couple in plane x, y  

𝑆 = 0, 𝑀0 = 0 – conditions of GPFS equilibrium 

  



33 
 

 

7.2. Replacing GPFS at selected starting point 

Magnitude of momentum 𝑀𝑖0 is expressed using Varignon theorem (Figure a) 

 
𝑀𝑖0 = 𝑥𝑖𝐹𝑖𝑦 − 𝑦𝑖𝐹𝑖𝑥  

 

GPFS at the chosen starting point é (Figure b) can be replaced by three scalar equations: 

 

𝑆𝑥 = ∑ 𝐹𝑖𝑥 = ∑ 𝐹𝑖 𝑐𝑜𝑠 𝑐𝑜𝑠 𝛼𝑖    

𝑆𝑦 = ∑ 𝐹𝑖𝑦 = ∑ 𝐹𝑖 𝑠𝑖𝑛 𝑠𝑖𝑛 𝛼𝑖    

𝑀0 = ∑ 𝑀𝑖0 = ∑ (𝑥𝑖𝐹𝑖𝑦 − 𝑦𝑖𝐹𝑖𝑥) = ∑ 𝐹𝑖(𝑥𝑖 𝑠𝑖𝑛 𝑠𝑖𝑛 𝛼𝑖  − 𝑦𝑖 𝑐𝑜𝑠 𝑐𝑜𝑠 𝛼𝑖 ) = ∑ 𝐹𝑖𝑝𝑖  

7.3. Replacing GPFS by a resultant 

𝑆 and 𝑀0 is replaced by the resultant 𝑅, where 𝑅 = 𝑆 and 𝛼𝑆 = 𝛼𝑅, shifted from the starting 

point 0 by distance p (Figure c). Magnitude of resultant is calculated as follows: 

 

𝑅 = √𝑅𝑥
2 + 𝑅𝑦

2 , where 

𝑅𝑥 = 𝑆𝑥 = ∑ 𝐹𝑖𝑥  

𝑅𝑦 = 𝑆𝑦 = ∑ 𝐹𝑖𝑦  

The angle 𝛼𝑅 and position p is calculated as follows 

𝑐𝑜𝑠 𝑐𝑜𝑠 𝛼𝑅 =  
𝑅𝑥

𝑅
, 𝑝 =

𝑀0

𝑅
 

7.4. GPFS equilibrium conditions 

Equilibrium conditions 𝑆 = 0, 𝑀0 = 0 is determined by three equilibrium scalar equations: 

 

 1st alternative: 2 component equations, 1 momentum equation 

𝑅𝑥 = 0,  ∑ 𝐹𝑖𝑥 = 0 

𝑅𝑦 = 0, ⇒ ∑ 𝐹𝑖𝑦 = 0 

𝑀0 = 0,  ∑ 𝑀𝑖0 = 0 

 

 2nd alternative: 3 momentum equations 

(∑ 𝑀𝑖)
𝐴

= 0  

(∑ 𝑀𝑖)
𝐵

= 0  

(∑ 𝑀𝑖)
𝐶

= 0  
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Points A, B, C must not lie in one line, as this line could act as a resultant and the 

equilibrium conditions would be met. 

 

 3rd alternative: 2 momentum and 1 component equation 

(∑ 𝑀𝑖)
𝐴

= 0  

(∑ 𝑀𝑖)
𝐵

= 0  

∑ 𝐹𝑖𝑥 = 0  

The joining line of points A, B must not be perpendicular to axis x (to the axis in which 

directionwe write the force formula), otherwise the resultant could be on this line and 

the equilibrium conditions would be met. 
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8. GENERAL SPATIAL FORCE SYSTEM 

General spatial force system consists of forces randomly distributed in the space. It is the 

most general type of force system, for which it holds true that: 

 

𝑆 ≠ 0, 𝑀0 ≠ 0,  𝑆. 𝑀0 ≠ 0 

 

If in general 𝑆 and 𝑀0 are not perpendicular to each other, GSFS cannot be replaced by 

one resultant. 

8.1. Replacing GSFS at chosen starting point 

If a given GSFS at the selected starting point 0, (Figure a), the effect of the i-th force at the 

point 0 is  

 

 sliding 𝐹𝑖 

 rotational 𝑀𝑖0 = 𝑟𝑖 × 𝐹𝑖 

 

The resulting effect of all forces in the given force system at the point 0 is 

 

 sliding (Figure b) 𝑆 = ∑ 𝐹𝑖 

 rotational (Figure c) 𝑀0 = ∑ 𝑀𝑖0 

 

𝑀0 = ∑ 𝑀𝑖0 ∑ 𝑟𝑖 × 𝐹𝑖 = ∑ |𝑖 𝑗 𝑘 𝑥𝑖 𝑦𝑖 𝑧𝑖 𝐹𝑖𝑥  𝐹𝑖𝑦 𝐹𝑖𝑧 |  

 

Magnitude and direction of sliding and rotational effect 

 
𝑆 = 𝑆𝑥 + 𝑆𝑦 + 𝑆𝑧 = 𝑆𝑧. 𝑖 + 𝑆𝑦. 𝑗 + 𝑆𝑧. 𝑘  

𝑀0 = 𝑀𝑥 + 𝑀𝑦 + 𝑀𝑧 = 𝑀𝑧. 𝑖 + 𝑀𝑦. 𝑗 + 𝑀𝑧. 𝑘  

 

The effect of GSFS to point 0 is expressed by six equations 

 

𝑆𝑥 = ∑ 𝐹𝑖𝑥 = ∑ 𝐹𝑖 𝑐𝑜𝑠 𝑐𝑜𝑠 𝛼𝑖    

𝑆𝑦 = ∑ 𝐹𝑖𝑦 = ∑ 𝐹𝑖 𝑐𝑜𝑠 𝑐𝑜𝑠 𝛽𝑖   

𝑆𝑧 = ∑ 𝐹𝑖𝑧 = ∑ 𝐹𝑖 𝑐𝑜𝑠 𝑐𝑜𝑠 𝛾𝑖   

𝑀𝑥 = ∑ 𝑀𝑖𝑥 = ∑ (𝑦𝑖𝐹𝑖𝑧 − 𝑧𝑖𝐹𝑖𝑦)  

𝑀𝑦 = ∑ 𝑀𝑖𝑦 = ∑ (𝑧𝑖𝐹𝑖𝑥 − 𝑥𝑖𝐹𝑖𝑧)  

𝑀𝑥 = ∑ 𝑀𝑖𝑥 = ∑ (𝑥𝑖𝐹𝑖𝑦 − 𝑦𝑖𝐹𝑖𝑥)  
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Magnitude and position of the resulting sliding effect 𝑆 (Figure d) is calculated as follows: 

 

𝑆 = √𝑆𝑥
2 + 𝑆𝑦

2 + 𝑆𝑧
2  

𝑐𝑜𝑠 𝑐𝑜𝑠 𝛼𝑆  =
𝑆𝑥

𝑆
, 𝑐𝑜𝑠 𝑐𝑜𝑠 𝛽𝑆  =

𝑆𝑦

𝑆
, (𝑐𝑜𝑠 𝑐𝑜𝑠 𝛾𝑆  =

𝑆𝑧

𝑆
) 

 

Magnitude and position of the resulting rotational effect 𝑀0 (Figure e) is: 

 

𝑀0 = √𝑀𝑥
2 + 𝑀𝑦

2 + 𝑀𝑧
2  

𝑐𝑜𝑠 𝑐𝑜𝑠 𝛼𝑀  =
𝑀𝑥

𝑀0
, 𝑐𝑜𝑠 𝑐𝑜𝑠 𝛽𝑀  =

𝑀𝑦

𝑀0
, (𝑐𝑜𝑠 𝑐𝑜𝑠 𝛾𝑀  =

𝑀𝑧

𝑀0
) 

 
 

The angle ϕ (Figure f) can be determined by means of scalar product 

  
𝑆 . 𝑀0 = 𝑆 𝑀0  𝑐𝑜𝑠 𝑐𝑜𝑠 𝜑  

 

  where 

 

 𝑐𝑜𝑠 𝑐𝑜𝑠 𝜑 =
𝑆𝑀0

𝑆𝑀0
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8.2. GSFS equilibrium conditions 

The conditions of a general spatial force system equilibrium are the following: 

 

𝑆 = 0, 𝑀0 = 0, tj. 

∑ 𝐹𝑖 = 0, ∑ 𝑀𝑖0 = 0 

 

Scalar form: six equilibrium equations: 

 

 1st alternative: three force and three momentum equations written to coordinate 

systems 

∑ 𝐹𝑖𝑥 = 0  

∑ 𝐹𝑖𝑦 = 0  

∑ 𝐹𝑖𝑧 = 0  

∑ 𝑀𝑖𝑥 = 0  

∑ 𝑀𝑖𝑦 = 0  

∑ 𝑀𝑖𝑧 = 0  

 

As in the previous chapters, couples can be replaced by momentum equations to other 

random axes, but the momentum equations cannot be replaced by other force equations. 

There must be at least three momentum equations to three various random axes. This 

way we can get other alternatives of expressing equilibrium conditions.  

 

 2nd alternative: 2 force and 4 momentum equations 

 3rd alternative: 1 force and 5 momentum equations 

 4th alternative: 6 momentum equations to the axes o1 - o6 

 

The axes o1 - o6 (does not have to include the axes x, y, z) must not be parallel and must 

not be intersected by one line.  
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9. STATIC ANALYSIS OF BODY SYSTEM 

A system of bodies is a structure consisting of at least two bodies besides a frame. The 

individual bodies in a system are linked to each other and to the frame. The bindings 

which linked the individual bodies to the frame are external links, the links between the 

bodies are called internal links. According to the type of mutual links, there are systems 

with different movability and different character of movement of individual bodies. Ac-

cording to characteristic properties the body systems are divided into planar and spatial, 

movable and immovable, kinematically and statically determinate and indeterminate. 

9.1. Kinematic and static determination of pla-
nar multi-body systems 

Kinematic determination (mobility) of multi-body systems is assessed by means of linkage 

dependency. The process is analogical to determination of body mobility.  

 

Interlink of two bodies is referred to as a kinematic couple. In the case of planar multi-

body systems, kinematic couples are divided by the structure into rotational, sliding and 

rolling, that remove two degrees of freedom of movement, and general that remove one 

degree of freedom of movement.  

 

If a system consists of n bodies out of which one was adjusted, that is, was created into a 

frame, the bodies before their link have 

 
𝑣 = 3(𝑛, − 1) = 3𝑛  

 

Degrees of freedom of movement, where  𝑛 = 𝑛, − 1 is a number of bodies besides a 

frame. If the system contains “m” particles besides “n” bodies, the number of degrees of 

freedom of such a system before linked is  

 

𝑣 = 2𝑚 + 3𝑛. 

 

The overall kinematic determinacy of a system is assessed by the linkage dependency 

formula 
𝑖 = 𝑣 − 𝑢𝑖𝑛𝑡𝑒𝑟𝑛𝑎𝑙 − 𝑢𝑒𝑥𝑡𝑒𝑟𝑛𝑎𝑙  

𝑢𝑖𝑛𝑡𝑒𝑟𝑛𝑎𝑙 – number of degrees of freedom removed by internal links 

𝑢𝑒𝑥𝑡𝑒𝑟𝑛𝑎𝑙 – number of degrees of freedom removed by external links 

 

When analyzing kinematic determinacy of a system, it is analyzed both internal and exter-

nal determinacy, where the following situations may occur: 
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 The overall kinematic determinacy is assessed with regard to internal and external 

links, where the resulting number of degrees of freedom of system movement is 

given by the relation 

>  overall kinematically indeterminate 

𝑖𝑐 = 𝑣 − 𝑢𝑖𝑛𝑡𝑒𝑟𝑛𝑎𝑙 − 𝑢𝑒𝑥𝑡𝑒𝑟𝑛𝑎𝑙  = 0 overall kinematically determinate 

    < overall kinematically overdetermined 

 When analyzing the internal kinematic determinacy only the internal links are con-

sidered, that is, the links between the bodies of the system. It is determined by 

linkage dependency 

> internally kinematically indeterminate 

𝑖𝑐 = 𝑣 − 𝑢𝑖𝑛𝑡𝑒𝑟𝑛𝑎𝑙 − 𝑣𝑆𝑇  = 0 internally kinematically determinate 

    < internally kinematically overdetermined 

where:  𝑢𝑖𝑛𝑡𝑒𝑟𝑛𝑎𝑙 – number of degrees of freedom of movement removed by 

internal links 

𝑣𝑆𝑇 – number of degrees of freedom of a system movement considered as a one 

rigid body to a frame. For a system considered as a single body in the plane, 𝑣𝑆𝑇 =

3. 

 

 When analyzing the external kinematical determinacy only the external links are 

considered, which bind the system to the frame, and the system is considered one 

rigid body. It is determined by linkage dependency 

> externally kinematically indeterminate 

𝑖𝑐 = 𝑣𝑆𝑇 − 𝑢𝑒𝑥𝑡𝑒𝑟𝑛𝑎𝑙    = 0 externally kinematically determinate 

< externally kinematically overdetermined 

A system which is kinematically determined can be internally kinematically inde-

terminate x-times, but at the same time it must be externally k-times kinematically 

overdetermined.  

9.2. Principle of static solution of multi-body 
systems 

The static solution of multi-body systems is based on the theorem of the forces balance. 

In terms of the forces acting on a multi-body system (Figure a) in its equilibrium, it can be 

stated that: 

 

 All external forces (load and reaction) acting on a body in a system are balanced 

(Figure  b) 

 In respect to the action and reaction axiom in each link, all internal forces are bal-

anced (Figure c). 

 The individual force systems consisting of all forces acting on each body or any set 

of bodies are balanced (Figure d) 
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9.3. Analytical (computational) solution of 
multi-body systems 

The basic method of static solution of systems is a release method. The method consists 

in releasing the individual bodies in the system (sets of member or the whole system) and 

determining the corresponding equilibrium conditions. If the system consists of “n” bodies 

without a frame and “m” particles, the equilibrium depends on  𝑟 = 3𝑛 + 2𝑚 independent 

equilibrium equations, based on which in the case of statically determined task the same 

number of unknown parameters of reactions and additional forces can be calculated.  

 

For external forces acting on a system of bodies and for forces action on a certain group 

of bodies in the system, there are three equilibrium conditions. For example, for calcula-

tion or reactions AX, AY, BX, BY, CX, CY 3 and 3 equilibrium equations for released bodies 2 

and 3 (Figure b) of the multi-bodies system from Figure a are available. 

 
In respect to their solvability, multi-body systems can be divided into simple and complex. 

 

Simple systems 

 

 With 𝑖𝑒𝑥𝑡𝑒𝑟𝑛𝑎𝑙 ≠ 0 can be solved by gradual solving the equilibrium of its members 

(Figure). 



41 
 

 

 
Based on the body 2 equilibrium, AX, AY, C32 = C23 will be determined; based on the body 3 

equilibrium, 3 BX, BY, MB can be calculated. 

 

 In the case of 𝑖𝑒𝑥𝑡𝑒𝑟𝑛𝑎𝑙 = 0 the system can be solved as a whole and subsequently 

the individual members equilibrium are solved (Figure)

 
 Simple systems include systems containing three-hinged arch. 

o Complex systems are those that cannot be solved directly and do not 

contain three-hinged arch 
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10. PLANAR BAR SYSTEMS 

A specific case of rigid multi-body systems is so-called truss structures, which we encoun-

ter in various structures, such as bridges, masts, cranes, roof structures.  

 

According to the spatial arrangement of the structure and the type of external forces sys-

tem, truss structures are divided into spatial and planar.  

 

Truss structures load can be concentrated at one point (load lifted by a crane) or contin-

uous (weight of a road, weight of the structure itself). In some cases the effect of external 

load is permanent, while sometimes it changes over time. 

 

To solve truss structures it is necessary to create a suitable static calculation model on the 

following simplification assumptions: 

 

 Truss structure elements can be considered one-dimensional bodies fixed to the 

structure by two linkages. These are called binary bodies. 

 Linkage of all binary bodies is considered articulated. It is possible also in the case 

of riveted or welded joints, if the elements connected are not too short. The con-

dition is the arrangement of the elements in individual joints so that the axes of 

the centers of gravity connected in one joint intersect at one point (called nodal 

point). 

 The structure loading is considered only in nodal points. Continuous load of struc-

ture elements is concentrated in two joints which connect the element to the struc-

ture.  

 

Such calculation model is called bar system. It is a system of unloaded bodies – bars, which 

are connected in joints, and they are loaded in the joints. With such load, only axial forces 

are generated (tense or compression). Bar systems can be spatial or planar.  
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10.1. Kinematical determinacy of bar systems 

Bar system is assessed as a system of particles mutually connected by bars. A bar system 

can be a whole that is called a bar body. 

 

Kinematical determinacy of a bar body, that is, external kinematical determinacy of planar 

bar system, will be assessed according to linkage dependency valid for a body in a plane.  

 
𝑖𝑒𝑥𝑡𝑒𝑟𝑛𝑎𝑙 = 3 − 𝑢𝑒𝑥𝑡𝑒𝑟𝑛𝑎𝑙  

 

Internal kinematical determinacy of a bar system is assessed according to 

> internally kinematically indeterminate 

𝑖𝑖𝑛𝑡𝑒𝑟𝑛𝑎𝑙 = 2𝑠 − 𝑝    = 3 internally kinematically determinate 

    < internally kinematically overdetermined 

 

where s – number of joints 

  p – number of bars 

  3 – for both relations, the number of degrees of freedom of a bar body 

  2 – number of degrees of freedom of a free particle in a plane 

 

Overall kinematical determinacy of a bar system 

𝑖𝑐 = 2𝑠 − 𝑝 − 𝑢𝑣𝑜, if ic = 0 – the system is kinematically and statically determined  

10.2. Static solution of bar systems 

The objective of static solution of bar systems is to identify the magnitude of axial forces 

in the bars, their orientation and unknown parameters of external reaction depending on 

external loading force effects. This could be achieved by several methods. 

 

 Central force systems equilibrium that acts only on the individual joints (the 

method of  nodal points) 

 Equilibrium of forces acting on a part of a bar system (method of sections) 

10.3. Nodal point method 

The principle of the method consists in solving the equilibrium of all forces acting on each 

joint separately. During the gradual releasing of all joints, equilibrium conditions of central 

force system acting on each joint are determined.   
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In case that the system as a whole (system body) is kinematically and statically deter-

mined, solving equilibrium of external forces (used for calculating external reactions) fa-

cilitate the overall solution of equilibrium equations for individual joints.   

 

 

10.4. Method of sections  

Solving axial forces by method of sections is based on the following assumption: if the bar 

system is balanced, the forces acting on each cut part of the bar system must be balanced. 

The equilibrium of this part can be solved in the plane or in space. For a body in a plane 

(space) there can be 3 (6) independent static equilibrium conditions, using which it is pos-

sible to determine 3 (6) unknown axial forces. It follows that when using this method it is 

necessary to divide the bar system by means of imaginary cut over three (6 in space) bars 

that do not intersect at one point. 

 

From the equilibrium of one of these parts it is possible to calculate axial forces in cut 

bars. If  each of the cut-off parts is subjected to a loading forces and reaction, these reac-

tion must be first determined from the bar body equilibrium.  
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11. CENTRE OF GRAVITY OF PHYSICAL 
AND GEOMETRIC OBJECTS 

Centre of gravity of a parallel force system with forces linked to A point through which the 

resultant of this force system passes when turning the system by any angle. If the parallel 

forces are the Earth gravity forces (the forces of gravity of individual parts of the body), 

the centre of this force system is called the centre of gravity. 

 

Position of centre of gravity can be determined analytically, graphically and experimen-

tally. In the case of analytic and graphical solution, the condition is the known distribution 

of the weight in the body, while the graphical solutions focus mostly on planar or sym-

metric spatial body. Experimental determination of the centre of gravity position is used 

mostly in the case of complex shapes and non-homogeneous bodies. 

11.1. Analytical identification of centre of grav-
ity position 

Elementary force 𝑑𝐺 = 𝑑𝐺 = 𝜌 𝑑𝑉 𝑔  acts on the volume element 𝑑𝑉 of a body of a weight 

𝜌, while g is a magnitude of gravitation acceleration. For the x-coordinate of the centre of 

gravity it holds true that 

 

𝑥𝑇 =
∫𝑉

𝑥 𝜌 𝑑𝑉 𝑔

∫𝑉
𝜌 𝑑𝑉 𝑔

=
∫𝑉

𝑥 𝜌 𝑑𝑉

∫𝑉
𝜌 𝑑𝑉

 

 

while the V volume is fully integrated. Similar equation is true for yT and zT. For calculating 

integrals we must know the distribution of density ρ in the body, that is function 𝜌 =

𝜌(𝑥, 𝑦, 𝑧). 

 

In the case of a homogeneous body density or the specific body weight is constant. The 

centre of the mass in this case is identical with the centre of gravity of the geometric fig-

ure. It follows that the position of the centre of gravity of a homogeneous body does not 

depend on its mass but it´s given by the geometric shape.  

 

𝑥𝑇 =
∫𝑉

𝑥𝑑𝑉

𝑉
, 𝑦𝑇 =

∫𝑉
𝑦𝑑𝑉

𝑉
, 𝑧𝑇 =

∫𝑉
𝑧𝑑𝑉

𝑉
 

 

In the case of a homogeneous body of a constant thickness t (shell) is 𝑑𝑉 = 𝑡 𝑑𝑆, where dS 

is an element of area and the coordinates of such a body are 
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𝑥𝑇 =
∫𝑆

𝑥𝑑𝑆

𝑆
, 𝑦𝑇 =

∫𝑆
𝑦𝑑𝑆

𝑆
, 𝑧𝑇 =

∫𝑆
𝑧𝑑𝑆

𝑆
 

 

where S is overall area of a body, ∫𝑆
𝑥 𝑑𝑆 – static moment of a body to the plane yz. 

In the case of a homogeneous body with a constant cross sectional area S all over its 

length l is 𝑑𝑉 = 𝑆𝑑𝑙 and the coordinates of such a centre of gravity are 

 

𝑥𝑇 =
∫𝑙

𝑥𝑑𝑙

𝑙
, 𝑦𝑇 =

∫𝑙
𝑦𝑑𝑙

𝑙
, 𝑧𝑇 =

∫𝑙
𝑧𝑑𝑙

𝑙
 

 

where l is an element of its length. 

 

If a body can be divided into a specific number of parts whose centers of gravity are known 

or is possible to calculate, then the centre of gravity of such a composed homogeneous 

body can be calculated as follows: 

 

𝑥𝑇 =
∑ 𝑥𝑖𝑉𝑖

∑ 𝑉𝑖

, 𝑦𝑇 =
∑ 𝑦𝑖𝑉𝑖

∑ 𝑉𝑖

, 𝑧𝑇 =
∑ 𝑧𝑖𝑉𝑖

∑ 𝑉𝑖

 

 

For a shell in the space 

 

𝑥𝑇 =
∑ 𝑥𝑖𝑆𝑖

∑ 𝑆𝑖

, 𝑦𝑇 =
∑ 𝑦𝑖𝑆𝑖

∑ 𝑆𝑖

, 𝑧𝑇 =
∑ 𝑧𝑖𝑆𝑖

∑ 𝑆𝑖

 

 

For a body of a constant cross-sectional area, or for a line in the space 

 

𝑥𝑇 =
∑ 𝑥𝑖𝑙𝑖

∑ 𝑙𝑖

, 𝑦𝑇 =
∑ 𝑦𝑖𝑙𝑖

∑ 𝑙𝑖

, 𝑧𝑇 =
∑ 𝑧𝑖𝑙𝑖

∑ 𝑙𝑖

 

 

The calculation of the centre of gravity coordinates will be performed by entering the re-

sults of sub-calculations in a table. 

 

 
 

Symbol Hi represents one of the variables Vi, Si, li. The coordinates of the centre of gravity 

will be calculated as a share of the relevant sums. 
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12. PASSIVE RESISTANCE 

12.1. Sliding friction 

 

 
Legend: pohyb – movement 

 

Ft – friction force 

FN – normal reaction 

Coulomb´s law: Ft = FN . f 

F – coefficient of sliding friction 

Ft – friction force - always acts against the movement 

12.2. Rolling resistance 

 

 
 

FT – tangential reaction 

FT – act against possible slipping 
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12.3. Pin friction moment 

 

 
MČ = fČ.rČ.A 

MČ = fČ . rČ . √Ax
2 + Ay

2 

 

MČ – pin friction moment 

FČ – coefficient of pin friction 

RČ – pin radius 

A – resulting reaction in pin 

  

12.4. Rigidity, immobility of ropes 

 
Legend: odvíjení - reeling, navíjení - winding, pohyb - movement 

ξ (ksí) – arm of rope rigidity  
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12.5. Fiber friction on cylindrical surface 

 

 
N1 > N2 

Euler´s law:  N1 =N2 . eα . f1 

  

α – wrappin angle [rad.] 

fl – coefficient of fiber friction on cylindrical surface 

 α [rad] =   (π / 180) . α 

 

 
N1 > N2 

Euler´s law:  N1 =N2 . eα . f1 
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